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of the crystals since the crystals would have a surfaoe 
area in the region of 50 m. ·/gm. 

It appears that about 75 per cent saturation with 
lithium and heating to 190 0 C. are able to prevent 
crystalline expansion. At 56 per cent lithium sa tura
tion there is some penetration into intracrystalline 
spaces but large orystalline swelling is not observed. 
At 25 per cent lithium saturation, montmorillonite 
exhibits large physical swelling as the result of ex
pansion beyond a potential barrier at a silioate sheet 
separation of 19 A. 

It can be conoluded that large crystalline swelling 
is not obtained at a surface density of charge of 
about 0 ·6 x 10-7 m.equiv./cm.-, but it is obtained at 
a surface density of charge of 1 x 10-7 m .equiv ./cm. 2 • 

We are indebted to Dr. K. Norrish for the determ
ination of strontium. 

.J. P. QumK 
B. K. G. THENG 
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MATHEMATICS 

Theory of Optimal Games 

THEORY of games, and also theory of fair games, 
are well-known subjects, but a theory of good (or 
optimal) games does not seem to exist. 

To theory of optimal games there would, for 
example, belong the question: Why, among serious 
poker-players, is it accepted as 'better' to play the 
game with a full pack and a hand of five cards rather 
than with, say, two Piquet packs shuffled together 
and a hand of seven cards? (The historical reason for 
this acceptance is not known, for the origin of poker 
is as obscure as is that of its name.) 

That a game may possess different states of good
ness is well seen from the varieties of two-handed 
whist. These may be epitomized thus: n full packs 
are shuffled together and equally divided among the 
two players ; of the 26n cards that each player 
receives, kp are dealt face down t.o form k packets 
of p cards each; k are dealt face up, one on top of 
each packet, and the remaining 26n - k(p + 1) cards 
form the player's hand, from which, before the trump 
is declared, he must throwaway r cards face down. 
When one of the k top cards is played, the card 
underneath it is turned up; and so on. In these 
games, obvious examples of zero goodness are (for 
all n), first, k = r = 0, and, secondly, p = r = 0, 
k = 26n; whereas, empirically, n = 2, P = 3, k = 
r = 8 'makes rather a good game'. 

In the oontext of theory of optimal games, it may 
be that croquet should receive consideration, for, in 
its (fairly short) history, it has, more than onoe, been 
felt non-optimal, and its controllers have altered the 
rules fundamentally (the most traumatic alterations 
being, perhaps, the decisions, first, to abandon 'play 
by rotation of colour, secondly, to award an optIOnal 
lift against a player who is 'doing too well' ). 

There would arise also the question: How far is 
competition a prerequisite of goodness? In patience 
games, this element is, naturally, lacking, yet many 
of the games are clearly 'very good', most notably, 
perhaps, those of the Miss Milligan series (of which 
Miss Milligan itself is, by trial and error, the optimal 
member). Croquet is a oompetitive game: the player 
of black-and-blue aohieves suocess if he 'goes round' 
before the player of red-and-yellow; but there 
seems no reason why a 'oroquet-patience', in which 
the two players oombine to get all four balls round 
in as few turns as possible, should not be an equally 
good game. 

Clea.rly, the great difficulty in theory of optimal 
gamcs will b e the establishment of a criterion, 01' 

measure, of goodness, and it may be that this estab
lishment will not fall within the domain of mathe· 
matics; but, once a measure has been established, 
some mathematical analysis or, at least, a mathe
matical envisagement, of the problem might well be 
possible. 

ALAN S. C. Ross 
University of Birmingham. 

A Remark on Stochastic Path Integrals 

VARIOUS stochastic functional~ of the type: 

8(t) = J: V(X(u), u) cItl, (I) 

where X(u) is a stochastic process, have been studied 
in recent years (see, for example, Kac' ). It seems 
worth noting that fOl' X(u) Markovian, there is often 
no partioular difficulty in setting up characteristic 
funotion equations, of the type derived in my book' 
on stochastic processes (see especially the end of 
ohapter 3) , applicable not only to (1) but also to 
rather more general types of integral. Thus for : 

t 
8(t) lim ~ v(X(u), 'U, AX(u), Au) 

8u-o u = o 
(2) 

provided 

E [1{exp(iM8 + l:cpAX) - 1}1 X(t) = x ] ,=. 

'P's (icp, i6, t, x) At + o( At) 

we may set up an operator equation of the form: 

ao \1 ' ( "6 a ) c :;- = ~ 8 ~cp, ~ , t, .;;:- .. 
vt vtcp 

(3) 

where a == E {exp(i6S(t) .1- l:cp X(t) )}. A partioular 
case given on page 86 of my book is v == X(u) Au. 
As further examples, consider v == [AX(u) ]', fOl' 
(i) the normal linear Markov process (whioh includes 
'Brownian motion' as a speoial case) and (ii) the 
simple birth-and-death process, for which S(t) reoords 
the total number of transitions. For (i), S(t) then 
increases regularly with t (as is well known); for 
(ii), G is readily evaluated, either by (3) or even more 
easily from the corresponding 'backward' equation. 
A further amplification of these points will be given 
elsewhere. 
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