Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aerosol-assisted self-assembly of mesostructured spherical nanoparticles

Abstract

Particles possessing nanometre-scale pores of well-defined size and connectivity are of interest for catalysis, chromatography and controlled release of drugs, and as fillers with low dielectric constant, pigments and hosts for optically active compounds1,2. Silica containing ordered mesopores (of nanometre-scale width) can be prepared by templating of surfactant3,4 and block copolymer5 liquid-crystalline mesophases, and interfacial phenomena have been used to control the macroscopic form of these materials, providing mesoporous particles1,6, fibres7,8 and films9,10. A variety of spherical or nearly spherical particles has been reported1,6,7,11,12,13, but the degree of ordering and the range of the porous mesostructures have been limited. Here we report a rapid, aerosol-based14,15,16 process for synthesizing solid, well-ordered spherical particles with stable pore mesostructures of hexagonal and cubic topology, as well as layered (vesicular) structures. Our method relies on evaporation-induced interfacial self-assembly17 confined to spherical aerosol droplets. This simple, generalizable process can be modified for the formation of ordered mesostructured thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of aerosol reactor.
Figure 2: Representative TEM micrographs of mesostructured silica particles.
Figure 3: TEM micrographs of a variety of nanocomposite particles.
Figure 4: Small-angle X-ray scattering (SAXS) curves for silica particles with hexagonal (trace A) or vesicular (B and C) mesophases.
Figure 5: TEM images of mesostructured films formed by an aerosol-assisted thin film deposition route.

Similar content being viewed by others

References

  1. Huo, Q., Feng, J., Schuth, F. & Stucky, G. D. Preparation of hard mesoporous silica spheres. Chem. Mater. 9, 14–17 (1997).

    Article  CAS  Google Scholar 

  2. Ozin, G. Nanochemistry: synthesis in diminishing dimensions. Adv. Mater. 4, 612–649 (1992).

    Article  CAS  Google Scholar 

  3. Kresge, C., Leonowicz, M., Roth, W., Vartuli, C. & Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Yang, H., Coombs, N. & Ozin, G. Mesoporous silica with micrometer-scale designs. Adv. Mater. 9, 811–814 (1997).

    Article  CAS  Google Scholar 

  5. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 and 300 Angstrom pores. Science 279, 548–552 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Schacht, S., Huo, Q., Voigt-Martin, I. G., Stucky, G. D. & Schuth, F. Oil-water interface templating of mesoporous macroscale structures. Science 273, 768–771 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bruinsma, P. J., Kim, A. Y., Liu, J. & Baskaran, S. Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres. Chem. Mater. 9, 2507–2512 (1997).

    Article  CAS  Google Scholar 

  8. Yang, P., Zhao, D., Chmelka, B. F. & Stucky, G. D. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 10, 2033–2036 (1998).

    Article  CAS  Google Scholar 

  9. Yang, H., Coombs, N., Sokolov, I. & Ozin, G. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature 381, 589–592 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Aksay, I. et al. Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Grun, M., Lauer, I. & Unger, K. K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9, 254–257 (1997).

    Article  Google Scholar 

  12. Tanev, P. & Pinnavaia, T. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271, 1267–1269 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Yang, H., Vovk, G., Coombs, N., Sokolov, I. & Ozin, G. A. Synthesis of mesoporous silica spheres under quiescent aqueous acidic conditions. J. Mater. Chem. 8, 743–750 (1998).

    Article  CAS  Google Scholar 

  14. Messing, G. L., Zhang, S.-C. & Jayanthi, G. V. Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707–2726 (1993).

    Article  CAS  Google Scholar 

  15. Gurav, A., Kodas, T. T., Pluym, T. & Xiong, Y. Aerosol processing of materials. Aerosol Sci. Technol. 19, 411–452 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Pratsinis, S. E. & Mastrangelo, S. V. R. Material synthesis in aerosol reactors. Chem. Eng. Prog. 85, 62–66 (1989).

    CAS  Google Scholar 

  17. Lu, Y. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 389, 364–368 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Nishida, F. et al. In situ fluorescence probing of the chemical changes during sol-gel thin film formation. J. Am. Ceram. Soc. 78, 1640–1648 (1995).

    Article  CAS  Google Scholar 

  19. Alfredsson, V. et al. Cubosome description of the inorganic mesoporous structure MCM-48. Chem. Mater. 9, 2066–2070 (1997).

    Article  CAS  Google Scholar 

  20. Ogawa, M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J. Am. Chem. Soc. 116, 7941–7942 (1994).

    Article  CAS  Google Scholar 

  21. Sellinger, A. et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Jayanthi, G. V., Zhang, S. C. & Messing, G. L. Modeling of solid particle formation during solution aerosol thermolysis. Aerosol Sci. Technol. 19, 478–490 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Yang, H., Coombs, N., Dag, O., Sokolov, I. & Ozin, G. Free-standing mesoporous silica films; morphogenesis of channel and surface patterns. J. Mater. Chem. 7, 1755–1761 (1997).

    Article  CAS  Google Scholar 

  24. Yang, H., Coombs, N. & Ozin, G. A. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Israelachvili, J. Intramolecular and Surface Forces (Academic, San Diego, (1992).

    Google Scholar 

  26. Bull, L. M. et al. in Zeolites and Related Microporous Materials: State of the Art 1994 (eds Bull, L. M. et al.) 429–434 (Elsevier Science, Amsterdam, (1994).

    Google Scholar 

  27. Brinker, C., Sehgal, R., Raman, N., Schunk, P. & Headley, T. Polymer approach to supported silica membranes. Sol-Gel Sci. Technol. 2, 469–476 (1994).

    Article  CAS  Google Scholar 

  28. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem.. Soc. Chem. Commun. 7, 801–802 (1994).

    Article  Google Scholar 

  29. Reiker, T. P. & Hubbard, P. F. The University of New Mexico/Sandia National Laboratories small-angle x-ray scattering laboratory. Rev. Sci. Instrum.(submitted).

Download references

Acknowledgements

We thank A. Singh and J. Nebo for discussions about porous particles, and A.Sellinger for discussions of oligomeric swelling agents. We also thank G. P. Lopez for assistance with the fluorescent emission microscopy and W. Gong for assistance with TEM. This work was partially supported by the UNM/NSF Center for Micro-Engineered Materials and the DOE Basic Energy Sciences Program. TEM investigations were performed in the Department of Earth and Planetary Sciences at the University of New Mexico. This work was done under contract from the US Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeffrey Brinker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Fan, H., Stump, A. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999). https://doi.org/10.1038/18410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18410

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing