Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests

Abstract

Humans have altered global nitrogen cycling such that more atmospheric N2 is being converted (‘fixed’) into biologically reactive forms by anthropogenic activities than by all natural processes combined1. In particular, nitrogen oxides emitted during fuel combustion and ammonia volatilized as a result of intensive agriculture have increased atmospheric nitrogen inputs (mostly NO3 and NH4) to temperate forests in the Northern Hemisphere2,3,4. Because tree growth in northern temperate regions is typically nitrogen-limited5, increased nitrogen deposition could have the effect of attenuating rising atmospheric CO2 by stimulating the accumulation of forest biomass. Forest inventories indicate that the carbon contents of northern forests have increased concurrently with nitrogen deposition since the 1950s6,7,8. In addition, variations in atmospheric CO2 indicate a globally significant carbon sink in northern mid-latitude forest regions9,10,11,12. It is unclear, however, whether elevated nitrogen deposition or other factors are the primary cause of carbon sequestration in northern forests. Here we use evidence from 15N-tracer studies in nine forests to show that elevated nitrogen deposition is unlikely to be a major contributor to the putative CO2 sink in forested northern temperature regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake of 15N-labelled throughfall by tree biomass after 1 to 3 years of tracer additions to non-fertilized (ambient deposition.), fertilized and ‘reverse fertilized’ (throughfall nitrogen removed by means of roofs) plots in North America and Europe.

Similar content being viewed by others

References

  1. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  2. Galloway, J. N., Schlesinger, W. H., Levy H. II, Michaels, A. & Schnoor, J. L. Nitrogen fixation: anthropogenic enhancement-environmental response. Glob. Biogeochem. Cycles 9, 235–252 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Townsend, A. R., Braswell, B. H., Holland, E. A. & Penner, J. E. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 6, 806–814 (1996).

    Article  Google Scholar 

  4. Holland, E. A. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys Res. 102, 15849–15866 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  6. Speicker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. (eds) Growth Trends in European Forests (Springer, Berlin, 1996).

    Book  Google Scholar 

  7. Apps, M. J. & Kurz, W. A. in Carbon Balance of World's Forested Ecosystem Towards a Global Assessment (ed. Kanninen, M.) (Acad. of Finland, Helsinki, 1994).

    Google Scholar 

  8. Turner, D. P., Koerper, G. J., Harmon, M. E. & Lee, J. J. Acarbon budget for forests of the conterminous United States. Ecol. Appl. 5, 421–436 (1995).

    Article  Google Scholar 

  9. Tans, P. P., Fung, I. Y. & Enting, I. G. in Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming (eds Woodwell, G. M. & Mackenzie, F. T.) (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  10. Ciais, P. et al. Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory global air sampling network. J. Geophys. Res. 100, 5051–5070 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Schimel, D. S. Terrestrial ecosystems and the carbon cycle. Glob. Change Biol. 1, 77–91 (1995).

    Article  ADS  Google Scholar 

  12. Houghton, R. A., Davidson, E. A. & Woodwell, G. M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Glob. Biogeochem. Cycles 12, 25–34 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Kohlmaier, G. H., Janecek, A. & Plochl, M. in Advances in Enrionmental Modelling. Marani, A.) 207–234 (Elsevier, New York, 1998).

    Google Scholar 

  14. Hudson, J. J. M., Gherini, S. A. & Goldstein, R. A. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the “missing” CO2 sink. Glob. Biogeochem. Cycles 8, 307–333 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Mäkipää, R. Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation. Forest Ecol. Mgmt 79, 217–226 (1995).

    Article  Google Scholar 

  16. Peterson, B. J. & Melillo, J. M. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B, 117–127 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Schindler, D. W. & Bayley, S. E. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Glob. Biogeochem. Cycles 7, 717–733 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Rastetter, E. B., McKane, R. B., Shaver, G. R. & Melillo, J. M. Changes in C storage by terrestrial ecosystems: how C–N interactions restrict responses to CO2 and temperature. Wat. Air Soil Pollut. 64, 327–344 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Tietema, A., Emmett, B. A., Gundersen, P., Kjønaas, O. J. & Koopmans, C. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. Forest Ecol. Mgmt 101, 19–27 (1998).

    Article  Google Scholar 

  20. Schleppi, P. et al. Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added 15N. Wat. Air Soil Pollut.(in the press).

  21. Nadelhoffer, K. J. et al. The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oceologia 103, 292–301 (1995).

    Article  ADS  Google Scholar 

  22. Nadelhoffer, K. J., Downs, M. R., Fry, B., Magill, A. & Aber, J. D. Controls on N retention and exports in a fertilized watershed. Environ. Monitor. Assess.(in the press).

  23. Nadelhoffer, K. J., Downs, M. R. & Fry, B. Sinks for N additions to an oak forest and a red pine plantation at the Harvard Forest, Massachusetts, USA. Ecol. Appl. 9, 72–86 (1999).

    Article  Google Scholar 

  24. Emmett, B. A. et al. Predicting the effects of atmospheric nitrogen deposition on conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1, 352–360 (1998).

    Article  CAS  Google Scholar 

  25. Magill, A. H., Downs, M. R., Nadelhoffer, K. J., Hallett, R. A. & Aber, J. D. Forest ecosystem response to four years of chronic nitrate and sulfate additions at Bear Brooks Watershed, Maine, USA. Forest Ecol. Mgmt 84, 29–37 (1996).

    Article  Google Scholar 

  26. Magill, A. H. et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Appl. 7, 402–415 (1997).

    Article  Google Scholar 

  27. McNulty, S. G., Aber, J. D. & Boone, R. D. Spatial changes in forest floor and foliar chemistry of spruce-fir forests across central New England. Biogeochemistry 14, 13–29 (1991).

    Article  CAS  Google Scholar 

  28. Gundersen, P., Callesen, I. & de Vries, W. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut. 102, 403–407 (1998).

    Article  CAS  Google Scholar 

  29. Abrahamsen, G., Stuanes, A. & Tveite, B. Long-Term Experiments with Acid Rain in Norwegian Forest Ecosystems. Ecological Studies Vol. 104(Springer, New York, 1993).

    Google Scholar 

  30. Hauck, R. D., Meisinger, J. J. & Mulvaney, R. L. in Methods of Soil Analysis, Part 2: Microbiological and Chemical Properties (eds Weaver, R. W., Angle, J. S. & Bottomly, J. S.) (Soil Science Society of America, Madison, WI, 1994).

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by the Commission of European Communities NITREX Project, the US National Science Foundation and the US–Norway Fulbright Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knute J. Nadelhoffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadelhoffer, K., Emmett, B., Gundersen, P. et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148 (1999). https://doi.org/10.1038/18205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18205

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing