Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica

Abstract

A high-resolution ice-core record of atmospheric CO2 concentration over the Holocene epoch shows that the global carbon cycle has not been in steady state during the past 11,000 years. Analysis of the CO2 concentration and carbon stable-isotope records, using a one-dimensional carbon-cycle model,uggests that changes in terrestrial biomass and sea surface temperature were largely responsible for the observed millennial-scale changes of atmospheric CO2 concentrations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mean CO2 concentrations from ice cores.
Figure 2: CO2 concentrations and stable-isotope ratios, Taylor Dome.
Figure 3: Comparison of our hypotheses.

References

  1. Keeling, C. D. & Whorf, T. P. in Trends '93: A compendium of Data on Global Change (eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. W.) 16–26 (Carbon Dioxide Information Analysis Center, Oak Ridge, (1994); update available at 〈http://cdiac.esd.ornl.gov/ndps/ndp001.html〉.

    Google Scholar 

  2. Neftel, A., Moor, E., Oeschger, H. & Stauffer, B. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315, 45– 47 (1985).

    ADS  CAS  Article  Google Scholar 

  3. Barnola, J.-M. et al. CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47, 264–272 (1995).

    ADS  Article  Google Scholar 

  4. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    ADS  CAS  Article  Google Scholar 

  5. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. CO2 record in the Byrd ice core 50,000–5,000 years BP. Nature 331, 609–611 (1988).

    ADS  Article  Google Scholar 

  6. Stauffer, B. et al. Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period. Nature 392, 59–62 (1998).

    ADS  CAS  Article  Google Scholar 

  7. Barnola, J.-M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2 -climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus B 43, 83– 90 (1991).

    ADS  Article  Google Scholar 

  8. Keeling, C. D., Mook, W. G. & Tans, P. P. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277, 121–123 (1979).

    ADS  CAS  Article  Google Scholar 

  9. Francey, R. J. et al. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 326–330 (1995).

    ADS  CAS  Article  Google Scholar 

  10. Francey, R. J. et al. A1000 year high precision record of δ13C in atmospheric CO2. Tellus(in the press).

  11. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Carbon isotope composition of atmospheric CO 2 during the last ice age from an Antarctic ice core. Nature 357, 488–490 ( 1992).

    ADS  CAS  Article  Google Scholar 

  12. Keeling, C. D., Whorf, T. P., Wahlen, M. & Plicht, J. v. d. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 ( 1995).

    ADS  CAS  Article  Google Scholar 

  13. Joos, F. & Bruno, M. Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes 13C and 14C. Glob. Biogeochem. Cycles 12, 277–295 (1998).

    ADS  CAS  Article  Google Scholar 

  14. Anklin, M., Barnola, J.-M., Schwander, J., Stauffer, B. & Raynaud, D. Processes affecting the CO 2 concentrations measured in Greenland ice. Tellus B 47, 461–470 (1995).

    ADS  Article  Google Scholar 

  15. Smith, H. J., Wahlen, M., Mastroianni, D. & Taylor, K. C. The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition. Geophys. Res. Lett. 24, 1–4 (1997).

    ADS  CAS  Article  Google Scholar 

  16. Smith, H. J., Wahlen, M., Mastroianni, D., Taylor, K. C. & Mayewski, P. The CO2 concentration of air trapped in Greenland Ice Sheet Project 2 ice formed during periods of rapid climate change. J.Geophys. Res. 102, 26577–26582 (1997).

    ADS  CAS  Article  Google Scholar 

  17. Delmas, R. J. Anatural artefact in Greenland ice-core CO2 measurements. Tellus B 45, 391–396 ( 1993).

    ADS  Article  Google Scholar 

  18. Tschumi, J. & Stauffer, B. Reconstructing the past atmospheric CO2 -concentration based on ice core analyses: open questions due to in situ production of CO2 in the ice. J. Glaciol. (submitted).

  19. Raynaud, D. et al. The ice record of greenhouse gases. Science 259, 926–934 (1993).

    ADS  CAS  Article  Google Scholar 

  20. Miller, S. L. Clathrate hydrates of air in Antarctic ice. Science 165, 489–490 (1969).

    ADS  CAS  Article  Google Scholar 

  21. Steig, E. J., Morse, D. L., Waddington, E. D. & Polissar, P. J. Using the sunspot cycle to date ice cores. Geophys. Res. Lett. 25, 163–166 ( 1998).

    ADS  CAS  Article  Google Scholar 

  22. Waddington, E. D. & Morse, D. L. Spatial variations of local climate at Taylor Dome, Antarctica: Implications for paleoclimate from ice cores. Ann. Glaciol. 20, 219– 225 (1994).

    ADS  Article  Google Scholar 

  23. Steig, E. J. et al. Sychronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998).

    ADS  CAS  Article  Google Scholar 

  24. Martinerie, P. et al. Air content paleo record in the Vostok ice core (Antarctica): A mixed record of climatic and glaciological parameters. J. Geophys. Res. 99, 10565–10576 ( 1994).

    ADS  Article  Google Scholar 

  25. Fitzpatrick, J. J. Preliminary report on the physical and stratigraphic properties of the Taylor Dome ice core. Antarct. J. US 29, 84– 86 (1994).

    Google Scholar 

  26. Brook, E. J., Severinghaus, J., Harder, S. & Bender, M. Atmospheric methane and millennial scale climate change.In Mechanisms of Millennial Scale Climate Change(Monogr, Am. Geophys. Union, Washington DC, in the press).

  27. Schwander, J. & Stauffer, B. Age difference between polar ice and the air trapped in its bubbles. Nature 311, 45–47 (1984).

    ADS  CAS  Article  Google Scholar 

  28. Sucher, C. M. Atmospheric Gases in the Taylor Dome Ice Core: Implications for East Antarctic Climate Change Thesis, Univ. Rhode Island(1997).

    Google Scholar 

  29. Leuenberger, M. & Siegenthaler, U. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360, 449–451 ( 1992).

    ADS  CAS  Article  Google Scholar 

  30. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Lamont-Doherty Geological Observatory, Palisades, ( 1982).

    Google Scholar 

  31. Bruno, M. & Joos, F. Terrestrial carbon storage during the past 200 years: A Monte Carlo analysis of CO2 data from ice core and atmospheric measurements. Glob. Biogeochem. Cycles 11, 111–124 (1997).

    ADS  CAS  Article  Google Scholar 

  32. Joos, F. et al. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B 48, 397–417 (1996).

    ADS  Article  Google Scholar 

  33. Archer, D., Kheshgi, H. & Maier-Reimer, E. Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24, 405–408 (1997).

    ADS  CAS  Article  Google Scholar 

  34. Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 ( 1994).

    ADS  CAS  Article  Google Scholar 

  35. Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

    ADS  CAS  Article  Google Scholar 

  36. Takahashi, T., Olafson, J., Goddard, J. D., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO 2 and nutrients in the high-latitude surface oceans: A comparative study. Glob. Biogeochem. Cycles 7, 843– 878 (1993).

    ADS  CAS  Article  Google Scholar 

  37. Bacastow, R. B. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2. Glob. Biogeochem. Cycles 10, 319–333 (1996).

    ADS  CAS  Article  Google Scholar 

  38. Mook, W. G. 13C in atmospheric CO2. Neth. J. Sea Res. 20, 211–223 (1986).

    CAS  Article  Google Scholar 

  39. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385 , 707–710 (1997).

    ADS  CAS  Article  Google Scholar 

  40. Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 ( 1998).

    ADS  CAS  Article  Google Scholar 

  41. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  42. Crowley, T. J. Ice age terrestrial carbon changes revisited. Glob. Biogeochem. Cycles 9, 377–389 ( 1995).

    ADS  CAS  Article  Google Scholar 

  43. Street-Perrott, F. A. & Perrott, R. A. in Global Climates Since the Last Glacial Maximum (ed. Wright, H. E.) 318– 356 (Univ. Minnesota Press, Minneapolis, (1993).

    Google Scholar 

  44. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374 , 46–49 (1995).

    ADS  CAS  Article  Google Scholar 

  45. Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).

    ADS  CAS  Article  Google Scholar 

  46. Esser, G. & Lautenschlager, M. Estimating the change of carbon in the terrestrial biosphere from 18000 BP to present using a carbon cycle model. Environ. Pollut. 83, 45–53 (1994).

    CAS  Article  Google Scholar 

  47. Wahlen, M., Allen, D., Deck, B. & Herchenroder, A. Initial measurements of CO2 concentrations (1530 to 1940 AD) in air occluded in the GISP2 ice core from Central Greenland. Geophys. Res. Lett. 18, 1457–1460 ( 1991).

    ADS  CAS  Article  Google Scholar 

  48. Enting, I. G. On the use of smoothing spline to filter CO2 data. J. Geophys. Res. 92, 10977–10984 (1987).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Palais, P. Grootes, T. Crowley, S. Björck, P. Clark, G. Esser, R. J. Francey, D. Jolly and E. Waddington for support; E. Brook, P. Grootes, C. Sucher and E. Steig for sharing data; the US NSF for permitting us to analyse the samples and G. Hargreaves (NICL) for preserving them from melting. We thank J.-M. Barnola, M. Leuenberger and O. Marchal for discussions. This work was supported by the US NSF OPP, the Swiss NSF, EPRI, BBW and BEW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Stocker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Indermühle, A., Stocker, T., Joos, F. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999). https://doi.org/10.1038/18158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18158

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing