Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport

Abstract

The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-β-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran·GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran·GppNHp resembles the canonical Ras·GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular ‘embrace’ enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran·GTP from importin-β-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein–protein interaction for a Ras-related protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative electron density around switch I in Ran·GppNHp and the conserved WKER motif of RanBD1 (residues 57–60).
Figure 2: The Ran·GTP-analogue structure and conformational change.
Figure 3: Structure of RanBD1.
Figure 4: The Ran·RanBD1 complex structure.
Figure 5: Molecular embrace and the DEDDDL motif.

Similar content being viewed by others

References

  1. Görlich, D. Transport into and out of the cell nucleus. EMBO J. 17, 2721–2727 (1998).

    Article  Google Scholar 

  2. Hartmann, E. & Görlich, D. ARan-binding motif found in nuclear pore proteins. Trends Cell Biol. 5, 192–193 (1995).

    Article  CAS  Google Scholar 

  3. Dingwall, C., Kandels-Lewis, S. & Séraphin, B. Afamily of Ran binding proteins that includes nucleoporins. Proc. Natl Acad. Sci. USA 92, 7525–7529 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Rexach, M. & Blobel, G. Protein import into nuclei—association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    Article  CAS  Google Scholar 

  5. Görlich, D., Pante, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    Article  Google Scholar 

  6. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  7. Floer, M. & Blobel, G. The nucleic transport factor karyopherin-beta binds stoichiometrically to ran-GTP and inhibits the ran GTPase-activating protein. J. Biol. Chem. 271, 5313–5316 (1996).

    Article  CAS  Google Scholar 

  8. Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 14, 705–715 (1995).

    Article  CAS  Google Scholar 

  9. Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of Ran·GTP from importin-β-related nuclear transport factors. FEBS lett. 419, 249–254 (1997).

    Article  CAS  Google Scholar 

  10. Wilken, N., Senécal, J.-L., Scheer, U. & Dabauvalle, M.-C. Localization of the Ran-GTP binding protein RanBP2 at the cytoplasmic side of the nuclear pore complex. Eur. J. Cell Biol. 68, 211–219 (1995).

    CAS  PubMed  Google Scholar 

  11. Delphin, C., Guan, T., Melchior, F. & Gerace, L. Ran·GTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol. Biol. Cell 8, 2379–2390 (1997).

    Article  CAS  Google Scholar 

  12. Yokoyama, N.et al. Agiant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmatically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).

    Article  CAS  Google Scholar 

  14. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).

    Article  CAS  Google Scholar 

  15. Melchior, F., Guan, T., Yokoyama, N., Nishimoto, T. & Gerace, L. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import. J. Cell Biol. 131, 571–581 (1995).

    Article  CAS  Google Scholar 

  16. Melchior, F. & Gerace, L. Two-way trafficking with Ran. Trends Cell Biol. 8, 175–179 (1998).

    Article  CAS  Google Scholar 

  17. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of human Ran complexed with GDP. Nature 374, 378–381 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Amor, J. C.et al. Structure of the human ADP-ribosylation factor I complexed with GDP. Nature 372, 704–708 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Greasley, S. E.et al. The structure of rat ADP-ribosylation factor-1 (ARF-1) complexed to GDP determined from two different crystal forms. Nature Struct. Biol. 2, 797–806 (1995).

    Article  CAS  Google Scholar 

  20. Abel, K., Yoder, M. D., Hilgenfeld, R. & Jurnak, F. An alpha to beta conformational switch in EF-TU. Structure 4, 1153–1159 (1996).

    Article  CAS  Google Scholar 

  21. Polekhina, G.et al. Helix unwinding in the effector of elongation factor EF-TU-GDP. Structure 4, 1141–1151 (1996).

    Article  CAS  Google Scholar 

  22. Wittinghofer, A. & Pai, E. F. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem. Sci. 16, 382–387 (1991).

    Article  CAS  Google Scholar 

  23. Goldberg, J. Structural basis for activation of ARF GTPase: Mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  24. Richards, S. A., Lounsbury, K. M. & Macara, I. The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J. Biol. Chem. 270, 14405–14411 (1995).

    Article  CAS  Google Scholar 

  25. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    Article  CAS  Google Scholar 

  26. Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. & Görlich, D. NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598 (1998).

    Article  CAS  Google Scholar 

  27. Stewart, M., Kent, H. M. & Mccoy, A. J. Structural basis for molecular recognition between nuclear transport factor 2 (NFT2) and GTP-bound form of the Ras family GTPase Ran. J. Mol. Biol. 277, 535–646 (1998).

    Article  Google Scholar 

  28. Beddow, A. L., Richards, S. A., Orem, N. R. & Macara, I. G. The Ran/TC4 GTPase-binding domain: Identification by expression cloning and characterization of a conserved sequence motif. Proc. Natl Acad. Sci. USA 92, 3328–3332 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Saraste, M. & Hyvönen, M. Pleckstrin homology domains: a fact file. Curr. Opin. Struct. Biol. 5, 403–408 (1995).

    Article  CAS  Google Scholar 

  30. Hyvönen, M. & Saraste, M. Structure of the PH domain and BTK motif from Bruton's tyrosine kinase: Molecular explanations for X-linked agammaglobulinaemia. EMBO J. 16, 3396–3404 (1997).

    Article  Google Scholar 

  31. Touhara, K., Inglese, J., Pitcher, J. A., Shaw, G. & Lefkowitz, R. J. Binding of G protein βγ-subunits to pleckstrin homology domains. J. Biol. Chem. 269, 10217–10220 (1994).

    CAS  PubMed  Google Scholar 

  32. Schlenstedt, G., Wong, D. H., Koepp, D. M. & Silver, P. A. Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J. 14, 5367–5378 (1995).

    Article  CAS  Google Scholar 

  33. Connolly, M. L. Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  34. Kuhlmann, J., Macara, I. & Wittinghofer, A. Dynamic and equilibrium studies on the interaction of Ran with its effector RanBP1. Biochemistry 36, 12027–12035 (1997).

    Article  CAS  Google Scholar 

  35. Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Structure of the high affinity complex of inositol triphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995).

    Article  CAS  Google Scholar 

  36. Hyvönen, M.et al. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14, 4676–4685 (1995).

    Article  Google Scholar 

  37. Herrmann, C., Martin, G. A. & Wittinghofer, A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901–2905 (1995).

    Article  CAS  Google Scholar 

  38. Nassar, N.et al. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Lounsbury, K. M., Richards, S. A., Carey, K. L. & Macara, I. G. Mutations within the Ran/TC4 GTPase-effects on regulatory factor interactions and subcellular localization. J. Biol. Chem. 271, 32834–32841 (1996).

    Article  CAS  Google Scholar 

  40. Scheffzek, K.et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1998).

    Article  Google Scholar 

  41. Chi, N. C., Adam, E. J. H., Visser, G. D. & Adam, S. A. RanBP1 stabilizes the interaction of Ran with p97 in nuclear protein import. J. Cell. Biol. 135, 559–569 (1996).

    Article  CAS  Google Scholar 

  42. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell contents. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  43. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  44. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  45. Brunger, A. T.et al. Crystallography and NMR system: A new software system for macromolecular structure determination. Acta Crystallogr. C 54, 905–921 (1998).

    CAS  Google Scholar 

  46. Esnouf, R. M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  47. Pai, E. F.et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  48. Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Merritt, E. A. & Murphy, M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Scherer for help with the original crystallization, R. Schebaum for secretarial assistance, and the staff of the EMBL outstation in Hamburg for help with the data collection. This study was supported by HFSP and the EG (A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Wittinghofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetter, I., Nowak, C., Nishimoto, T. et al. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999). https://doi.org/10.1038/17969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17969

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing