Table 1. HEMOGLOBIN E IN MALAYSIANS IN MALAYA

State	No. examined	No. with hæmoglobin <i>E</i>	Per cent
Eastern States : Kelantan Trengganu Pahang	78 16 13	8 2 4	13.1
Western States : North— Kedah Penang and	33	1	
Province Wellesley Perak	26 25	$\frac{2}{2}$	6.0
Central— Selangor Negri Sembilan Malacca	$\begin{array}{c} 101\\ 26\\ 7\end{array}$	6 1	5.2
South— Johore	21	-	0
Total	346	26	7.5

of the purified hæmoglobin by freezing and thawing were properties described for hæmoglobin H, first seen in a Chinese family in the United States⁴.

We hope to continue this survey, and to extend it to other communities of Malaya—of three aborigines so far examined one, a Senoi, showed hæmoglobins A and E. It seems already that the distribution of hæmoglobin E in Malaya follows an ethnological pattern, as was noted for that of sickling in Uganda⁵ and of hæmoglobin C in the Gold Coast⁶ and in Nigeria⁷.

H. LEHMANN

St. Bartholomew's Hospital, London, E.C.1.

1. R. Bhagwan Singh

Institute for Medical Research,

Kuala Lumpur.

Federation of Malaya.

¹ Na-Nakorn, S., Minnich, V., and Chernoff, A. 1., J. Lab. Clin. Med., 47, 490 (1956).

² Lehman, H., Story, P., and Thein, H., Brit. Med. J., i, 544 (1956); and unpublished results.

- ^a Lie-Injo Luan Eng, Nature, 176, 463 (1955); "Penjelidikan haemoglobin patologie di Indonesia", thesis, University of Indonesia, Djakarta (1956).
- ⁴Rigas, D. A., Koler, R. D., and Osgood, E. E., Science, 121, 372 (1955).
- ⁵ Lehmann, H., and Raper, A. B., Nature, 164, 495 (1949).
- ⁶ Edington, G. M., and Lehmann, H., Man, 56, 34 (1956).
- ⁷ Walters, J. H., and Lehmann, H., Trans. Roy. Soc. Trop. Med. Hyg., 50, 204 (1956).

Oxidation in vitro of Radioactive Estradiol by Preparations of Human Tissue

THE oxidation of cestradiol to cestrone and cestriol in the pathway of degradation of the cestrogens has been inferred from *in vivo* studies in which cestrone and cestriol were found in the urine of the male human¹ and cestrone in the urine of other mammals² after the administration of large amounts of cestradiol. More recently, Ryan and Engel³ found an *in vitro* interconversion of cestradiol and cestrone by tissueslice preparations of several organs of the rat and man. Using counter-current distribution to achieve separation of the steroids, an accumulation of either cestradiol or cestrone was found when the other vestrogen was present in the substrate. These workers were not able to demonstrate formation or utilization of œstriol. We have observed the *de novo* formation of œstrone and œstriol from labelled œstradiol by human-tissue slice and homogenate preparations from a variety of organs.

Tissues obtained from surgical specimens were placed in cold phosphate-nicotinamide buffer4 immediately after excision. The sera used were freshly obtained pooled sera from the individually centrifuged blood specimens of several female donors. Tissue slices were suspended in 5 volumes of buffer; homogenates were a 20 per cent suspension in buffer ; and sera were diluted in 20 volumes of buffer. 7 ml. of a tissue preparation and 1 mgm. adenosine monophosphate, 1 mgm. diphosphopyridine nucleotide and 0.10 mgm. cestradiol-16-14C (2 µc./mgm.) were placed in each flask and incubated at 37°C. under oxygen for $2\frac{1}{2}$ hr. After incubation, 0.15 gm. metaphosphoric acid, 0.5 gm. 'Celite' and 3 gm. sodium chloride were added to each flask. 10.0 mgm. of carrier, either œstrone or œstriol, was then added.

The cestrogens were isolated from an ether extract by the paper chromatographic procedure of Mitchell and Davies⁵. The area which contained the sample and which corresponded to authentic cestradiol, cestrone or cestriol was cut out and extracted with alcohol. This alcoholic extract was evaporated to dryness in planchets, weighed and assayed for specific radioactivity.

Table 1. OXIDATION OF ŒSTRADIOL-14C BY VARIOUS TISSUES

Q estes s	(Estrogen recovered (range (counts/min.)/mgm.)	
System	Œstrone	Œstriol
Ovary { Slice Homogenate Slice Homogenate Liver, male, homogenate Kidney, male, homogenate Muscle, male, homogenate Serum Blank	$\begin{array}{r} 4.970-6,139\\ 5,130-7,100\\ 3,470\\ 4,150\\ 6,350-7,800\\ 335\\ 245\\ 30-60\\ 20-38 \end{array}$	187-20387-1300-40-420-88

Liver, ovary and testis preparations, in this order, are highly active in converting œstradiol to œstrone; kidney and muscle preparations are less active. The conversion to œstriol occurs in ovarian preparations, and to a lesser degree in preparations of liver. There is no or negligible conversion in pooled female-blood serum. The homogenates were as active or perhaps slightly more active than comparable tissue-slice preparations.

[•] The incorporation of acetate-¹⁴C into estradiol by tissue preparations of dog ovary prior to its incorporation into estrone⁶ is consistent with the concept that estradiol is the estrogen primarily synthesized in the ovary, and that estrone and estriol are then formed by oxidation.

Robert M. Dowben

JOSEPH L. RABINOWITZ

Radioisotope Unit,

Veterans Administration Hospital,

Philadelphia, Penn.

May 1.

- ¹ Heard, R. D. H., and Hoffman, M. M., J. Biol. Chem., 141, 329 (1941). Pincus, G., and Pcarlman, W. H., J. Biol. Chem., 144, 569 (1942).
- ² Fish, W. R., and Dorfman, R. I., J. Biol. Chem., 140, 83 (1941); 143, 15 (1942).
- ³ Ryan, K. J., and Engel, L. L., Endocrinology, 52, 277, 287 (1953).
- ⁴ Rabinowitz, J. L., and Gurin, S., J. Biol. Chem., 208, 307 (1954).
- ⁵ Mitchell, F. L., and Davies, R. E., Biochem. J., 56, 690 (1954).
- ⁶ Rabinowitz, J. L., and Dowben, R. M., Biochim. Biophys. Acta, 16, 96 (1955).