Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4− clusters

Abstract

Microporous materials have found extensive application as catalysts, ion-exchange media and sorbents1,2. The discovery of mesoporous silica3 has opened the path to selective catalysis and separation of large molecules and to the synthesis of inorganic–organic composite materials, polymer mesofibres and semiconducting quantum dots4,5,6,7. Various oxide-based mesoporous materials, such as TiO2, ZrO2, SnO2, Al2O3, Nb2O5 and GeO2, have been reported8,9,10,11,12,13. A challenge for materials research is now to expand the scope of mesoporous materials beyond the oxides. Only a few non-oxide mesostructured composites, such as CdS, SnS2 and CdSe, have been reported; they are usually synthesized by ad hoc hydrothermal methods or from aqueous solutions containing ill-defined species, and are often not well characterized14,15,16. Herewe report the rational synthesis of a new family of metal germanium sulphide mesostructured materials prepared by a non-aqueous surfactant-templated assembly of adamantanoid [Ge4S10]4− cluster precursors. In the presence of quaternary alkylammonium surfactants, [Ge4S10]4− anions in formamide solution self-organize with metal cations (Co2+, Ni2+, Cu+ and Zn2+) to create well ordered hexagonal metal germanium sulphide mesostructures, some having fibre-like morphologies with channels running down the long axis of the fibre. Materials of this genre could prove effective in applications as diverse as detoxification of heavy metals in polluted water streams, sensing of sulphurous vapours, and the formation of semiconductor quantum ‘anti-dot’ devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction and TEM results.
Figure 2: Raman spectra.
Figure 3: NMR and thermogravimetry results.
Figure 4: Proposed architecture of the mesostructured material.

Similar content being viewed by others

References

  1. Szostak, R. Handbook of Molecular Sieves (Van Nostrand Reinhold, New York, 1992).

    Google Scholar 

  2. Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry, and Use (Wiley-Interscience, Toronto, 1974).

    Google Scholar 

  3. Kresge, C. T., Leonowicz, M., Roth, W. J., Vartuli, J. C. & Beck, J. C. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Sellinger, A. et al. Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Wu, C. & Bein, T. Conducting polyaniline filaments in a mesoporous channel host. Science 264, 1757–1759 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Maschmeyer, T., Rey, F., Sankar, G. & Thomas, J. M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Chomski, E., Dag, & & Ouml;., & Kuperman, A., Coombs, N. & Ozin, G. A. New forms of luminescent silicon:silicon-silica composite mesostructures. Chem. Vap. Deposition 2, 8–13 (1996).

    Article  CAS  Google Scholar 

  8. Hue, Q. S. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994).

    Article  ADS  Google Scholar 

  9. Antonelli, D. M. & Ying, J. Y. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Edn. Engl. 35, 426–430 (1996).

    Article  CAS  Google Scholar 

  10. Bagshaw, S. A. & Pinnavaia, T. J. Mesoporous alumina molecular sieves. Angew. Chem. Int. Edn. Engl. 35, 1102–1105 (1996).

    Article  CAS  Google Scholar 

  11. Tian, Z.-R. et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276, 926–930 (1997).

    Article  CAS  Google Scholar 

  12. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. & Scüth, F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Edn. Engl. 35, 541–543 (1996).

    Article  CAS  Google Scholar 

  13. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Fröba, M. & Oberender, N. First synthesis of mesostructured thiogermanates. Chem. Commun. 1729–1730 (1997).

  16. Neeraj & Rao, C. N. R. Metal chalcogenide-organic nanostructured composites from self-assembled organic amine templates. J. Mater. Chem. 8, 279–280 (1998).

    Article  CAS  Google Scholar 

  17. Bedard, R. L., Vail, L. D., Wilson, S. T. & Flanigen, E. M. Hydrocarbon conversion process using crystalline microporous metal sulfide compositions. US Patent 4,933,068 (1990).

  18. Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M. & Flanigen, E. M. in Zeolites: Facts, Figures, Future (eds Jacobs, P. A. & van Santen, R. A.) 375–387 (Elsevier, Amsterdam, 1989).

  19. Yaghi, O. M., Sun, Z., Richardson, D. A. & Groy, T. L. Directed transformation of molecules to solids: synthesis of a microporous sulfide from molecular germanium sulfide cages. J. Am. Chem. Soc. 116, 807–808 (1994).

    Article  CAS  Google Scholar 

  20. Tan, K., Darovsky, A. & Parise, J. B. Synthesis of a novel open-framework sulfide, CuGe2S5·(C2H5)4N, and its structure solution using synchrotron imaging plate data. J. Am. Chem. Soc. 117, 7039–7040 (1995).

    Article  Google Scholar 

  21. Sheldrick, W. S. & Wachhold, M. Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Edn. Eng. 36, 206–224 (1997).

    Article  CAS  Google Scholar 

  22. Achak, O., Pivan, J. Y., Maunaye, M., Loüer, M. & Loüer, D. Structure refinement by the Rietveld method of the thiogermanates [(CH3)4N]2MGe4S10(M = Fe, Cd). J. Solid State Chem. 121, 473–478 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Bowes, C. L. et al. Thermally stable self-assembling open-frameworks: isostructural Cs+ and (CH3)4N+ iron germanium sulfides. Chem. Ber. 129, 283–287 (1996).

    Article  CAS  Google Scholar 

  24. Wärnheim, T. & Jönsson, A. Phase diagrams of alkyltrimethylammonium surfactants in some polar solvents. J. Colloid Interface Sci. 125, 627–633 (1988).

    Article  ADS  Google Scholar 

  25. Bonhomme, F. & Kanatzidis, M. G. Structurally characterized mesostructured hybrid surfactant-inorganic lamellar phases containing the adamantane [Ge4S10]4 anion: synthesis and properties. Chem. Mater. 10, 1153–1159 (1998).

    Article  CAS  Google Scholar 

  26. Bowes, C. L. et al. Dimetal linked open frameworks: [(CH3)4N]2(Ag2,Cu2)Ge2S10. Chem. Mater. 8, 2147–2152 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. L. Bedard for helpful discussions, critical reading of the manuscript and elemental analyses of the materials. We thank E. Chomski for creative and technical assistance with Fig. 4. G.A.O. acknowledges the Killam Foundation for the award of an Isaac Walton Killam research fellowship (1995–97). M.J.M. is indebted to NSERC for a post-graduate scholarship (1995–99). This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and UOP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Ozin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLachlan, M., Coombs, N. & Ozin, G. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4− clusters. Nature 397, 681–684 (1999). https://doi.org/10.1038/17776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17776

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing