Aharonov–Bohm oscillations in carbon nanotubes


When electrons pass through a cylindrical electrical conductor aligned in a magnetic field, their wave-like nature manifests itself as a periodic oscillation in the electrical resistance as a function of the enclosed magnetic flux1. This phenomenon reflects the dependence of the phase of the electron wave on the magnetic field, known as the Aharonov–Bohm effect2, which causes a phase difference, and hence interference, between partial waves encircling the conductor in opposite directions. Such oscillations have been observed in micrometre-sized thin-walled metallic cylinders3,4,5 and lithographically fabricated rings6,7,8. Carbon nanotubes9,10 are composed of individual graphene sheets rolled into seamless hollow cylinders with diameters ranging from 1 nm to about 20 nm. They are able to act as conducting molecular wires11,12,13,14,15,16,17,18, making them ideally suited for the investigation of quantum interference at the single-molecule level caused by the Aharonov–Bohm effect. Here we report magnetoresistance measurements on individual multi-walled nanotubes, which display pronounced resistance oscillations as a function of magnetic flux.We find that the oscillations are in good agreement with theoretical predictions for the Aharonov–Bohm effect in a hollow conductor with a diameter equal to that of the outermost shell of the nanotubes. In some nanotubes we also observe shorter-period oscillations, which might result from anisotropic electron currents caused by defects in the nanotube lattice.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A single multi-walled carbon nanotube electrically contacted with four electrodes.
Figure 2: Magnetoresistance R (B) at five different temperatures T measured for a MWNT in a parallel magnetic field B (solid curves).
Figure 3: As Fig. 2 but for two different temperatures T on another MWNT.


  1. 1

    Altshuler, B. L., Aronov, A. G. & Spivak, B. Z. The Aharonov–Bohm effect in disordered conductors. Pis'ma Zh. Eksp. Teor. Fiz. 33, 101–103 (1981) [ JETP Lett. 33, 94–97 (1981)].

  2. 2

    Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

  3. 3

    Sharvin, D. Y. & Sharvin, Y. V. Magnetic-flux quantization in a cylindrical film of a normal metal. Pis'ma Zh. Eksp. Teor. Fiz. 34, 285–288 (1981) [ JETP Lett. 34, 272–275 (1982)].

  4. 4

    Aronov, A. G. & Sharvin, Y. V. Magnetic-flux effects in disordered conductors. Rev. Mod. Phys. 59, 755–779 (1987).

  5. 5

    Gijs, M., Van Haesendonck, C. & Bruynseraede, Y. Resistance oscillations and electron localization in cylindrical Mg films. Phys. Rev. Lett. 52, 2069–2072 (1984).

  6. 6

    Pannetier, B., Chaussy, J., Rammal, R. & Gandit, P. Magnetic flux quantization in the weak-localization regime of a nonsuperconducting metal. Phys. Rev. Lett. 53, 718–721 (1984).

  7. 7

    Webb, R., Washburn, S., Umbach, C. & Laibowitz, D. C. Observation of h /e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696–2699 (1985).

  8. 8

    Chandrasekhar, V., Rooks, M. J., Wind, S. & Prober, D. E. Observation of Aharonov–Bohm electron interference effect with period h /e and h /2e in individual micro-sized, normal-metal rings. Phys. Rev. Lett. 55, 1610–1613 (1985).

  9. 9

    Ijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

  10. 10

    Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1986).

  11. 11

    Langer, L. et al. Quantum transport in multiwalled carbon nanotubes. Phys. Rev. Let. 76, 479–482 (1996).

  12. 12

    Dai, H., Wong, E. W. & Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996).

  13. 13

    Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996).

  14. 14

    Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

  15. 15

    Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

  16. 16

    Bachtold, A. et al. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl. Phys. Lett. 73, 274–276 (1998).

  17. 17

    Bachtold, A., Strunk, C., Schönenberger, C., Salvetat, J.-P. & Forró, L. in Proc. XIIth Int. Winterschool on Electronic Properties of Novel Materials (eds Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 65–68 (AIP, New York, 1998).

  18. 18

    Frank, S., Poncharal, P., Wang, Z. L. & Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

  19. 19

    Begmann, G. Weak localizations in thin films. Phys. Rep. 107, 1–56 (1984).

  20. 20

    Hamada, N., Sawada, D.-I. & Oshiyama, A. New one-dimensional conductors: graphite microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992).

  21. 21

    Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

  22. 22

    Mintmire, J. W., Dunlap, B. I. & White, C. T. Are fullerene tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992).

  23. 23

    Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

  24. 24

    Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

  25. 25

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

  26. 26

    Miyamoto, Y. Mechanically stretched carbon nanotubes: Induction of chiral current. Phys. Rev. B 54, R11149–R11152 (1996).

  27. 27

    Ebbesen, T. W. & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

  28. 28

    Bonard, J. M. et al. Purification and size-selection of carbon nanotubes. Adv. Mater. 9, 827–831 (1997).

Download references


We thank H.-W. Fink, M. Henny, T. Hoss, M. Krüger, C. Terrier and V. Thommen for contributions. This work was supported by the Swiss National Science Foundation.

Author information

Correspondence to Christian Schönenberger.

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.