Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bright dunes on Mars

Abstract

Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind1. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MOC images of bright and dark dunes on Mars.
Figure 2: MOC image showing blanketing material filling several craters that are 200–400 m in diameter.

Similar content being viewed by others

References

  1. Sagan, C. et al. Variable features on Mars, 2, Mariner 9. Global results. J. Geophys. Res. 78, 4163–4196 (1973).

    Article  ADS  Google Scholar 

  2. Bell, J. F., Thomas, P. C., Wolff, M. J., Lee, S. W. & James, P. B. Mineralogy of the Martian north polar sand sea from 1995 Hubble Space Telescope near-IR observations. Proc. Lunar Planet. Sci. Conf. 27, 87–88 (1997).

    Google Scholar 

  3. Thomas, P. C. & Weitz, C. Sand dune materials and polar layered deposits on Mars. Icarus 81, 185–215 (1989).

    Article  ADS  Google Scholar 

  4. Edgett, K. S. & Lancaster, N. Volcaniclastic aeolian dunes: Terrestrial examples and application to Martian sands. J. Arid Environ. 25, 271–297 (1993).

    Article  ADS  Google Scholar 

  5. Christensen, P. R. Regional dust deposits on Mars: Physical properties, age, and history. J. Geophys. Res. 91, 3533–3545 (1986).

    Article  ADS  Google Scholar 

  6. Mustard, J. et al. The surface of Syrtis major: Composition of the volcanic substrate and mixing with altered dust and soil. J. Geophys. Res. 98, 3387–3400 (1993).

    Article  ADS  Google Scholar 

  7. Edgett, K. S. & Parker, T. J. “Bright” aeolian dunes on Mars: Viking orbiter observations. Proc. Lunar Planet. Sci. Conf. 29(CD-ROM) ((1998)).

  8. Ward, A. W. et al. Global map of aeolian features of Mars. J. Geophys. Res. 90, 2038–2056 (1985).

    Article  ADS  Google Scholar 

  9. Edgett, K. S. Aeolian dunes as evidence for explosive volcanism in the Tharsis region of Mars. Icarus 130, 96–114 (1997).

    Article  ADS  Google Scholar 

  10. Tsoar, H., Greeley, R. & Peterfreund, A. R. Mars: the north polar sand sea and related wind patterns. J. Geophys. Res. 84, 8167–8182 (1979).

    Article  ADS  Google Scholar 

  11. Greeley, R. & Williams, S. H. Dust deposits on Mars: The “parna” analog. Icarus 110, 165–177 ((1994)).

    Article  ADS  Google Scholar 

  12. Toulmin, P. et al. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82, 4625–4634 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Rieder, R. et al. The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode. Science 278, 1771–1774 (1997).

    Article  ADS  CAS  Google Scholar 

  14. White, B. R. Soil transport by winds on Mars. J. Geophys. Res. 84, 4643–4651 ((1979)).

    Article  ADS  Google Scholar 

  15. Warren, P. H. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. J. Geophys. Res. 103, 16759–16773 ((1998)).

    Article  ADS  CAS  Google Scholar 

  16. McKee, E. D. Structures of dune at White Sands National Monument, New Mexico. Sedimentology 7, 3–69 (1966).

    Article  ADS  Google Scholar 

  17. Jones, D. J. Gypsum–oolite dunes, Great Salt Lake desert, Utah. Bull. Am. Assoc. Petrol. Geol. 37, 2530–2538 (1938).

    Google Scholar 

  18. Thomas, P. C., Veverka, J., Gineris, D. & Wong, L. ‘Dust’ streaks on Mars. Icarus 49, 398–415 (1984).

    Google Scholar 

  19. Malin, M. C. et al. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science 279, 1681–1685 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Arvidson, R. E., Guinness, E. A. & Lee, S. Differential aeolian redistribution rates on Mars. Nature 278, 533–535 (1979).

    Article  ADS  Google Scholar 

  21. Kieffer, H. H. & Zent, A. P. in Mars (eds Kieffer, H., Jakosky, B., Snyder, C. & Matthews, M.) 1180–1220 (Univ. Arizona Press, Tucson, (1992)).

    Google Scholar 

  22. Thomas, P. C. Present wind activity on Mars: Relation to large latitudinally zoned sediment deposits. J. Geophys. Res. 87, 9999–10008 (1982).

    Article  ADS  Google Scholar 

  23. Greeley, R., Skypeck, A. & Pollack, J. B. Martian aeolian processes and deposits: Comparisons with general circulation model results. J. Geophys. Res. 98, 3183–3196 (1993).

    Article  ADS  Google Scholar 

  24. Wells, E. N., Veverka, J. & Thomas, P. Mars: Experimental study of albedo changes caused by dust fallout. Icarus 58, 331–338 (1984).

    Article  ADS  Google Scholar 

  25. Lee, P. L. & Thomas, P. C. Longitudinal dunes on Mars: Relation to current wind regimes. J. Geophys. Res. 100, 5381–5395 (1995).

    Article  ADS  Google Scholar 

  26. Edgett, K. S. & Blumberg, D. G. Star and linear dunes on Mars. Icarus 112, 448–464 (1994).

    Article  ADS  Google Scholar 

  27. Zimbelman, J. R. Spatial resolution and the interpretation of Martian morphology: Implications for subsurface volatiles. Icarus 71, 257–267 (1987).

    Article  ADS  Google Scholar 

  28. Breed, C. S., McCauley, J. F. & Davis, P. A. Ripple blankets: geomorphic evidence for regional sand sheet deposits on Mars. Proc. Lunar Planet. Sci. Conf. 18, 127 (1987).

    ADS  Google Scholar 

  29. Hartmann, W. K. et al. Evidence for recent volcanism on Mars from crater counts. Nature 397, 586–589 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Pye, K. Aeolian Dust and Dust Deposits (Academic, New York, (1987)).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the technical help of M. Caplinger, J. Warren, M. Ravine, M. Ryan, M. Ockert-Bell, I. Dauber, R. Sullivan, K. Edgett, B. Carcich, A. Fox, A. Lowenkron & M. Roth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Malin, M., Carr, M. et al. Bright dunes on Mars. Nature 397, 592–594 (1999). https://doi.org/10.1038/17557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17557

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing