RGD peptides induce apoptosis by direct caspase-3 activation

Abstract

Synthetic peptides containing the arginine–glycine–aspartate (RGD) motif have been used extensively as inhibitors of integrin–ligand interactions in studies of cell adhesion, migration, growth and differentiation1,2,3, because the RGD motif is an integrin-recognition motif found in many ligands. Here we report that RGD-containing peptides are able to directly induce apoptosis without any requirement for integrin-mediated cell clustering or signals. We show that RGD-containing peptides enter cells and directly induce autoprocessing and enzymatic activity of pro-caspase-3, a pro-apoptotic protein. Using the breast carcinoma cell line MCF-7, which has a functional deletion of the caspase-3 gene, we confirm that caspase-3 is required for RGD-mediated cell death. In addition to an RGD motif, pro-caspase-3 also contains a potential RGD-binding motif, aspartate–aspartate–methionine (DDM)4, near the site of processing to produce the p12 and p17 subunits5. On the basis of the ability of RGD–DDX interactions to trigger integrin activation6, we suggest that RGD peptides induce apoptosis by triggering conformational changes that promote pro-caspase-3 autoprocessing and activation. These findings provide an alternative molecular explanation for the potent pro-apoptotic properties of RGD peptides in models of angiogenesis, inflammation and cancer metastasis7,8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: RGD-containing peptides induce lymphocyte apoptosis.
Figure 2: RGD peptides mediate their pro-apoptotic effects independently of integrin clustering and enter cells.
Figure 3: RGD-containing peptides induce pro-caspase-3 autoprocessing and activation directly in a cell-free system.
Figure 4: Caspase-3 is required for RGD-mediated cell death.
Figure 5: RGD peptides induce apoptosis and caspase-3 activation in lung fibroblasts cultured on type I collagen.

References

  1. 1

    Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Meredith, J. E. & Schwartz, M. A. Integrins, adhesion and apoptosis. Trends Cell Biol. 7, 146–150 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Werb, Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Pasqualini, R., Koivunen, E. & Ruoslahti, E. Apeptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J. Cell Biol. 130, 1189–1196 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Nicholson, D. W. et al. Identification and inhibition of the ICE/ced-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Du, X. P. et al. Ligands activate integrin αIIbβ3 (platelet gpIIb-IIIa). Cell 65, 409–416 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Humphries, M. J., Olden, K. & Yamada, K. M. Asynthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma-cells. Science 233, 467–470 (1986).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ferguson, T. A., Mizutani, H. & Kupper, T. S. Two integrin-binding peptides abrogate T cell-mediated immune-responses in vivo. Proc. Natl Acad. Sci. USA 88, 8072–8076 (1991).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Brooks, P. C. et al. Integrin αvβ3 antagonists promote tumor-regression by inducing apoptosis of angiogenic blood-vessels. Cell 79, 1157–1164 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Salmon, M. et al. Inhibition of T cell apoptosis in the rheumatoid synovium. J. Clin. Invest. 99, 439–446 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Lwebuga-Mukasa, J. S. AMn2+-enhanced, RGD-dependent adhesion technique for isolation of adult rat type II alveolar epithelial cells for immediate functional studies. Am. J. Resp. Cell Mol. Biol. 10, 347–354 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Yamada, K. M. & Miyamoto, S. Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol. 7, 681–689 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Jacobson, M. D. Programmed cell death: a missing link is found. Trends Cell Biol. 7, 467–469 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Henkart, P. A. ICE family proteases—mediators of all apoptotic cell death? Immunity 4, 195–201 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Martin, D. A., Siegel, R. M., Zheng, L. X. & Lenardo, M. J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/mach α1) death signal. J. Biol. Chem. 273, 4345–4349 (1998).

    CAS  Article  Google Scholar 

  18. 18

    MacCorkle, R. A., Freeman, K. W. & Spencer, D. M. Synthetic activation of caspases: artificial death switches. Proc. Natl Acad. Sci. USA 95, 3655–3660 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yang, X. L., Chang, H. Y. & Baltimore, D. Essential role of ced-4 oligomerization in ced-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Pan, G. H., O'Rourke, K. & Dixit, V. M. Caspase-9, Bcl-xL, and APAF-1 form a ternary complex. J. Biol. Chem. 273, 5841–5845 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Janicke, R. U., Sprengart, M. L., Wati, M. R. & Porter, A. G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357–9360 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    CAS  Article  Google Scholar 

  23. 23

    McGill, G., Shimamura, A., Bates, R. C., Savage, R. E. & Fisher, D. E. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts. J. Cell Biol. 138, 901–911 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Hayman, E. G., Pierschbacher, M. D. & Ruoslahti, E. Detachment of cells from culture substrate by soluble fibronectin peptides. J. Cell Biol. 100, 1948–1954 (1985).

    CAS  Article  Google Scholar 

  25. 25

    Boucaut, J. C. et al. Biologically-active synthetic peptides as probes of embryonic-development—a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell-migration in avian embryos. J. Cell Biol. 99, 1822–1830 (1984).

    CAS  Article  Google Scholar 

  26. 26

    Dsouza, S. E., Ginsberg, M. H. & Plow, E. F. Arginyl-glycyl-aspartic acid (RGD)—a cell-adhesion motif. Trends Biochem. Sci. 16, 246–250 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Zou, H., Henzel, W. J., Liu, X. S., Lutschg, A. & Wang, X. D. APAF-1, a human protein homologous to C-elegans ced-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of ced-4 with ced-3 and ced-9: a molecular framework for cell death. Science 275, 1122–1126 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Li, C. J., Friedman, D. J., Wang, C. L., Metelev, V. & Pardee, A. B. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268, 429–431 (1995).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Hu, Y. M., Benedict, M. A., Wu, D. Y., Inohara, N. & Nunez, G. Bcl-xL interacts with APAF-1 and inhibits APAF-1-dependent caspase-9 activation. Proc. Natl Acad. Sci. USA 95, 4386–4391 (1998).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Shamsadeen, M. Zwede and D. Hardie for technical assistance. This work was funded by grants from the Arthritis Research Campaign (to D.P., D.S.-T., M.S.), The Royal Society (to J.M.L.), Cancer Research Campaign (to N.V.H.), Medical Research Council (to G.P., K.T., A.N.A.) and Wellcome Trust (C.D.B., D.L.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mike Salmon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buckley, C., Pilling, D., Henriquez, N. et al. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397, 534–539 (1999). https://doi.org/10.1038/17409

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing