Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland

Abstract

Climate fluctuations during the past millennium are relatively well documented1. On a longer timescale, there is growing evidence of millennial-scale variability of Holocene climate, at periodicities of 2,500 and 950 years (possibly caused by changes in solar flux)2,3 and 1,500 years (maybe related to an internal oscillation of the climate system)4,5,6. But the involvement of deep water masses in these Holocene climate changes has yet to be established. Here we use sediment grain-size data from the Iceland basin to reconstruct past changes in the speed of deep-water flow. The study site is under the influence of Iceland–Scotland Overflow Water (ISOW), the flow of which is an important component of the ‘thermohaline’ circulation that modulates European climate. Flow changes coincide with some known climate events (the Little Ice Age and the Mediaeval Warm Period), and extend over the entire Holocene epoch with aquasi-periodicity of 1,500 years. The grain-size data indicate afaster ISOW flow when the climate of northern Europe is warmer. However, a second mode of operation is observed in the early Holocene, when warm climate intervals are associated with slower ISOW flow. At that time the melting remnant of land-based, glacial-age ice may have provided a sufficient source of fresh water to the ocean to reduce ISOW flow south of Iceland.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Data from kasten core NEAP-15K with an inset map showing its location in the south Iceland basin and the simplified regional flow of ISOW.
Figure 2: North Atlantic Holocene palaeoenvironmental proxy records on a calendar years BP(and AD/BC) basis.
Figure 3: Spectral analysis by the Blackman-Tukey technique34 of the sortable silt mean size record from NEAP-15K using data as shown in Fig. 2b.

References

  1. 1

    Lamb, H. H. Climatic History and the Future (Princeton Univ. Press, ( 1985)).

    Google Scholar 

  2. 2

    Röthlisberger, F. 10,000 Jahre Gletschergeschichte der Erde(Sauerländer, Aarau, (1986)).

    Google Scholar 

  3. 3

    O'Brien, S. R. et al. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, 1962–1964 (1995).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bond, G. et al. Apervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Campbell, I. D., Campbell, C., Apps, M. J., Rutter, M. W. & Bush, A. B. G. Late Holocene 1500 year climatic periodicities and their implications. Geology 26, 471–473 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sirocko, F., Garbe-Schonberg, D., McIntyre A. & Molfino, B. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272, 526– 529 (1996).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Broecker, W. S. & Denton, G. H. The role of the ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 ( 1989).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Broecker, W. S., Bond, G. & Klas, M. Asalt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5, 469–477 ( 1990).

    ADS  Article  Google Scholar 

  9. 9

    Rasmussen, T. L., Thomsen, E., van Weering, T. C. E. & Labeyrie, L. Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years. Paleoceanography 11, 757–771 (1996).

    ADS  Article  Google Scholar 

  10. 10

    McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 ( 1995).

    ADS  Article  Google Scholar 

  11. 11

    McCave, I. N., Manighetti, B. & Beveridge, N. A. S. Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374, 149–152 (1995).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Balsam, W. L. & McCoy, F. W. Atlantis sediments: glacial/interglacial comparisons. Paleoceanography 2, 531– 542 (1987).

    ADS  Article  Google Scholar 

  13. 13

    Shor, A. N. Bottom currents and abyssal sedimentation processes south of Iceland.Thesis, Woods Hole Oceanographic Inst.((1980)).

  14. 14

    McCave, I. N. & Tucholke, B. E. in The Western North Atlantic RegionVol. M (eds Vogt, P. R. & Tucholke, B. E.) (451– 468) (Geol. Soc. Am., Boulder, (1986)).

  15. 15

    Manighetti, B. & McCave, I. N. Depositional fluxes, palaeoproductivity, and ice rafting in the NE Atlantic over the past 30 ka. Paleoceanography 10, 579– 592 (1995).

    ADS  Article  Google Scholar 

  16. 16

    Stuiver, M. & Reimer, P. J. Extended 14Ca data-base and revised calib 3.0 C-14 age calibration program. Radiocarbon 35, 215–230 ( 1993).

    Article  Google Scholar 

  17. 17

    Keigwin, L. D. & Jones, G. A. Glacial-Holocene stratigraphy, chronology, and paleoceanographic observations on some North Atlantic sediment drifts. Deep-Sea Res. 36, 845–867 (1989).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bianchi, G. G., Hall, I. N., McCave, I. N. & Joseph, L. Measurement of the sortable silt current speed proxy using the Sedigraph 5100 and Coulter Counter IIe: Precision and accuracy. Sedimentology(in the press).

  19. 19

    Grove, J. M. The Little Ice Age(Methuen, London, (1988)).

    Book  Google Scholar 

  20. 20

    Grove, J. M. & Switsur, V. R. Glacial geological evidence for the Medieval Warm Period. Clim. Change 26, 143–169 (1994).

    ADS  Article  Google Scholar 

  21. 21

    Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res. 102, 26471– 26488 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Alley, R. B. et al. Holocene climatic instability: A prominent, widespread event 8,200 yr ago. Geology 25, 483–486 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Bard, E. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241– 244 (1996).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Oppo, D. W., McManus, J. F. & Cullen, J. L. Abrupt climate events 500,000 to 340,000 years ago: evidence from subpolar North Atlantic sediments. Science 279, 1335–1338 (1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. 102, 26345–26366 (1997).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Keigwin, L. D. The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science 274, 1504–1508 ( 1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Dickson, R. R., Lazier, J., Meincke, J., Rhines, P. & Swift, J. Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38, 241–295 (1996).

    ADS  Article  Google Scholar 

  28. 28

    Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res. 99, 12319–12341 ( 1994).

    ADS  Article  Google Scholar 

  29. 29

    van Aken, H. M. & Becker, G. Hydrography and through-flow in the north-eastern North Atlantic Ocean: the NANSEN project. Prog. Oceanogr. 38, 297– 346 (1996).

    ADS  Article  Google Scholar 

  30. 30

    Mauritzen, C. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I 43, 769– 806 (1996).

    Article  Google Scholar 

  31. 31

    Price, J. F. & Baringer, M. O'N. Outflows and deep water production by marginal seas. Prog. Oceanogr. 33, 161 –200 (1994).

    ADS  Article  Google Scholar 

  32. 32

    Sakai, K. & Peltier, W. R. Amultibasin model of the global thermohaline circulation: Paleoceanographic analyses of the origins of ice-age climate variability. J. Geophys. Res. 101, 22535–22562 (1996).

    ADS  Article  Google Scholar 

  33. 33

    Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2upset the current balance? Science 278 , 1582–1588 (1997).

    ADS  CAS  Article  Google Scholar 

  34. 34

    OS-3 ARAND SYSTEM: Documentation and ExamplesVol. 1 (Computer Center, Oregon State Univ., (1973)).

Download references

Acknowledgements

We thank S. Crowhurst for help in the spectral analysis of the data presented here, N.Shackleton for comments on an earlier draft, and R. Dickson for hydrographic observations. This work was supported by UK NERC for the North East Atlantic Palaeoceanography and Climate Change project (NEAPACC).

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bianchi, G., McCave, I. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397, 515–517 (1999). https://doi.org/10.1038/17362

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing