Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accelerated dissolution of diatom silica by marine bacterial assemblages

Abstract

Downward fluxes of biogenic silica and organic matter in the global ocean derive dominantly from the productivity of diatoms — phytoplankton with cell walls containing silica encased in an organic matrix1,2. As diatoms have an absolute requirement for silicon (as silicic acid)3, its supply into the photic zone — largely by silica dissolution and upwelling — controls diatom production (and consequently the biological uptake of atmospheric CO2 by the ocean) over vast oceanic areas4. Current biogeochemical models assume silica dissolution to be controlled by temperature, zooplankton grazing and diatom aggregation4,5, but the role of bacteria has not been established. Yet bacteria utilize about half of the organic matter derived from oceanic primary production6 by varied strategies, including attack on dead and living diatoms by using hydrolytic enzymes7,8, and could adventitiously hasten silica dissolution by degrading the organic matrix which protects diatom frustules from dissolution9,10. Here we report the results of experiments in which natural assemblages of marine bacteria dramatically increased silica dissolution from two species of lysed marine diatoms compared to bacteria-free controls. Silica dissolution accompanied, and was caused by, bacterial colonization and hydrolytic attack. Bacteria-mediated silicon regeneration rates varied with diatom type and bacterial assemblage; observed rates could explain most of the reported upper-ocean silicon regeneration5,11. Bacteria-mediated silicon regeneration may thus critically control diatom productivity and the cycling and fate of silicon and carbon in the ocean.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bacterial colonization and silicon regeneration of diatoms lysed by freeze-thaw.
Figure 2: Pronase E digestion of C. fusiformis or T. weissflogii detritus.

References

  1. Nelson, D. M., DeMaster, D. J., Dunbar, R. B. & Smith, W. O. J Cycling of organic carbon and biogenic silica in the Southern Ocean: estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf. J. Geophys. Res. 101, 18519–18532 (1996).

    ADS  CAS  Article  Google Scholar 

  2. Longhurst, A. R. & Harrison, W. G. The biological pump: profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22, 47–123 (1989).

    ADS  Article  Google Scholar 

  3. Lewin, J. C. in Physiology and Biochemistry of Algae(ed. Lewin, R. E.) 445–455 (Academic, New York, (1962)).

    Google Scholar 

  4. Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    ADS  CAS  Article  Google Scholar 

  5. Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).

    ADS  CAS  Article  Google Scholar 

  6. Cole, J. J., Findlay, S. & Pace, M. L. Bacterioplankton production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).

    ADS  Article  Google Scholar 

  7. Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142 (1992).

    ADS  CAS  Article  Google Scholar 

  8. Smith, D. C., Steward, G. F., Long, R. A. & Azam, F. Bacterial utilization of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. II 42, 75–97 (1995).

    ADS  CAS  Article  Google Scholar 

  9. Kamatani, A. Dissolution rates of silica from diatoms decomposing at various temperatures. Mar. Biol. 68, 91–98 (1982).

    CAS  Article  Google Scholar 

  10. Lewin, J. C. The dissolution of silica from diatom walls. Geochim. Geophys. Acta 21, 182–198 (1961).

    ADS  CAS  Article  Google Scholar 

  11. Brzezinski, M. A. & Nelson, D. M. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res. I 42, 1215–1237 (1995).

    CAS  Article  Google Scholar 

  12. Nelson, D. M. & Goering, J. J. Near-surface silica dissolution in the upwelling region off northwest Africa. Deep-Sea Res. 24, 65–73 (1977).

    ADS  CAS  Article  Google Scholar 

  13. Brzezinski, M. A. & Nelson, D. M. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-Sea Res. 36, 1009–1030 (1989).

    ADS  CAS  Article  Google Scholar 

  14. Cowie, G. L. & Hedges, J. I. Digestion and alteration of the biochemical constituents of a diatom (Thalassiosira weissflogii) ingested by a herbivorous zooplankton (Calanus pacificus). Limnol. Oceanogr. 41, 581–594 (1996).

    ADS  CAS  Article  Google Scholar 

  15. Tande, K. S. & Slagstad, D. Assimilation efficiency in herbivorous aquatic organisms — the potential of the ratio method using 14C and biogenic silica as markers. Limnol. Oceanogr. 30, 1093–1099 (1985).

    ADS  Article  Google Scholar 

  16. Biddanda, B. A. & Pomeroy, L. R. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).

    ADS  Article  Google Scholar 

  17. Brussaard, C. P. D.et al. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar. Ecol. Prog. Ser. 123, 259–271 (1995).

    ADS  Article  Google Scholar 

  18. Berges, J. A. & Falkowski, P. G. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol. Oceanogr. 43, 129–135 (1998).

    ADS  CAS  Article  Google Scholar 

  19. Brussaard, C. P. D., Noordeloos, A. A. M. & Riegman, R. Autolysis kinetics of the marine diatom Ditylum brightwellii (Bacillariophyceae) under nitrogen and phosphorus limitation and starvation. J. Phycol. 33, 980–987 (1997).

    Article  Google Scholar 

  20. DeLong, E. Archael means and extremes. Science 280, 542–543 (1998).

    CAS  Article  Google Scholar 

  21. Kröger, N., Bergsdorf, C. & Sumper, M. Anew calcium binding glycoprotein family constitutes a major diatom cell wall component. EMBO J. 13, 4676–4683 (1994).

    Article  Google Scholar 

  22. Smayda, T. J. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8, 353–414 (1970).

    Google Scholar 

  23. Kamatani, A. & Riley, J. P. Rate of dissolution of diatom silica walls in seawater. Mar. Biol. 55, 29–35 (1979).

    CAS  Article  Google Scholar 

  24. Brzezinski, M. A., Alldredge, A. L. & O'Bryan, L. M. Silica cycling within marine snow. Limnol. Oceanogr. 42, 1706–1713 (1997).

    ADS  CAS  Article  Google Scholar 

  25. Brzezinski, M. A., Phillips, D. R., Chavez, F. P., Friederich, G. E. & Dugdale, R. C. Silica production in the Monterey, California, upwelling system. Limnol. Oceanogr. 42, 1694–1705 (1997).

    ADS  CAS  Article  Google Scholar 

  26. Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis(Pergamon, Oxford, (1984)).

    Google Scholar 

  27. Werner, D. Die Kieselsäure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin und Guillard. Arch. Mikrobiol. 55, 278–308 (1966).

    CAS  Article  Google Scholar 

  28. Hoppe, H. G. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 11, 299–308 (1983).

    ADS  CAS  Article  Google Scholar 

  29. Smith, D. C. & Azam, F. Asimple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).

    Google Scholar 

  30. Lee, S. & Fuhrman, J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298–1303 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. C. Smith, M. Hildebrand, M. A. Brzezinski, J. T. Hollibaugh and K. A. Bidle for discussions and suggestions. This work was supported by NSF grants to F.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq Azam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bidle, K., Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508–512 (1999). https://doi.org/10.1038/17351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17351

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing