Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A single-photon turnstile device

Abstract

Quantum-mechanical interference between indistinguishable quantum particles profoundly affects their arrival time and counting statistics. Photons from a thermal source tend to arrive together (bunching) and their counting distribution is broader than the classical Poisson limit1. Electrons from a thermal source, on the other hand, tend to arrive separately (anti-bunching) and their counting distribution is narrower than the classical Poisson limit2,3,4. Manipulation of quantum-statistical properties of photons with various non-classical sources is at the heart of quantum optics: features normally characteristic of fermions — such as anti-bunching, sub-poissonian and squeezing (sub-shot-noise) behaviours — have now been demonstrated5. A single-photon turnstile device was proposed6,7,8 to realize an effect similar to conductance quantization. Only one electron can occupy a single state owing to the Pauli exclusion principle and, for an electron waveguide that supports only one propagating transverse mode, this leads to the quantization of electrical conductance: the conductance of each propagating mode is then given by GQ = e2/h (where e is the charge of the electron and h is Planck's constant; ref. 9). Here we report experimental progress towards generation of a similar flow of single photons with a well regulated time interval.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation and fabrication of our single-photon turnstile device.
Figure 2: The electrical characteristics of the single-photon turnstile device.
Figure 3: The photon emission characteristics of the single-photon turnstile device.

Similar content being viewed by others

References

  1. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Article  ADS  Google Scholar 

  2. Reznikov, M., Heiblum, M., Shtrikman, H. & Mahalu, D. Temporal correlation of electrons: suppression of shot noise in a ballistic quantum point contact. Phys. Rev. Lett. 75, 3340–3343 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Kumar, A., Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Experimental test of the quantum shot noise reduction theory. Phys. Rev. Lett. 76, 2778–2781 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Walls, D. F. & Milburn, G. J. Quantum Optics(Springer, Berlin, (1994)).

    Book  Google Scholar 

  6. Imamoḡlu, A. & Yamamoto, Y. Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p–i–n heterojunctions. Phys. Rev. Lett. 72, 210–213 (1994).

    Article  ADS  Google Scholar 

  7. Imamoḡlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  Google Scholar 

  8. Yamamoto, Y. Aphoton in solitary confinement. Nature 390, 17–18 (1997).

    Article  ADS  CAS  Google Scholar 

  9. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Yamamoto, Y. in Quantum Optics of Confined Systems(eds Ducloy, M. & Bloch, D.) 201–281 (Kluwer, Dordrecht, (1996)).

    Book  Google Scholar 

  11. Beenakker, C. W. J. & Büttiker, M. Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46, 1889–1892 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Liu, R. C. & Yamamoto, Y. Suppression of quantum partition noise in mesoscopic electron branching circuits. Phys. Rev. B 49, 10520–10532 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Imamoḡlu, A. & Yamamoto, Y. Noise suppression in semiconductor p–i–n junctions: Transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission process. Phys. Rev. Lett. 70, 3327–3330 (1993).

    Article  ADS  Google Scholar 

  14. Kim, J., Kan, H. & Yamamoto, Y. Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode. Phys. Rev. B 52, 2008–2012 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Kim, J. & Yamamoto, Y. Theory of noise in p–n junction light emitters. Phys. Rev. B 55, 9949–9959 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Delsing, P., Likharev, K. K., Kuzmin, L. S. & Claeson, T. Time-correlated single-electron tunneling in one-dimensional arrays of ultrasmall tunnel junctions. Phys. Rev. Lett. 63, 1861–1864 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Geerligs, L. J.et al. Frequency-locked turnstile device for single electrons. Phy. Rev. Lett. 64, 2691–2694 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Kouwenhoven, L. P.et al. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers. Phy. Rev. Lett. 67, 1626–1629 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Hobson, W. S.et al. Silicon nitride encapsulation of sulfide passivated GaAs/AlGaAs microdisk lasers. J. Vac. Sci. Technol. A 13, 642–645 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Kim, J., Yamamoto, Y. & Hogue, H. H. Noise-free avalanche multiplication in Si solid state photomultipliers. Appl. Phys. Lett. 70, 2852–2854 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. H. Hogue for providing us with SSPM detectors. This work was partially supported by JSEP.

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Benson, O., Kan, H. et al. A single-photon turnstile device. Nature 397, 500–503 (1999). https://doi.org/10.1038/17295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17295

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing