Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changing sources of nutrients during four million years of ecosystem development

Abstract

As soils develop in humid environments, rock-derived elements are gradually lost, and under constant conditions it seems that ecosystems should reach a state of profound and irreversible nutrient depletion. We show here that inputs of elements from the atmosphere can sustain the productivity of Hawaiian rainforests on highly weathered soils. Cations are supplied in marine aerosols and phosphorus is deposited in dust from central Asia, which is over 6,000 km away.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location of the study sites.
Figure 2: Plant-available nutrients in soil and nutrients in leaves.
Figure 3: Change in soil element content integrated over the top metre of soil, compared with element contents in the lava parent material38.
Figure 4: Comparison of Ca inputs from substrate and the atmosphere.
Figure 5: Indicators of the sources of Sr and Ca measured for each site.
Figure 6: Map showing estimates of the long-term (integrated glacial plus interglacial) rate of dust deposition to the Pacific Ocean (from. ref. 58).
Figure 7: The mass fraction of dust-derived soil component based on Th/Hf ratios, Eu anomalies, and quartz content plotted against the dust mass fraction derived from Nd isotopes for the 150,000-year-old site.
Figure 8: Comparison of phosphorus inputs from substrate and the atmosphere.

References

  1. 1

    Aber, J. D. & Melillo, J. M. Terrestrial Ecosystems(Saunders, Philadelphia, (1991)).

    Google Scholar 

  2. 2

    Schlesinger, W. H. Biogeochemistry: An Analysis of Global Change 2nd edn(Academic, San Diego, (1996)).

    Google Scholar 

  3. 3

    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stevens, P. R. & Walker, T. W. The chronosequence concept and soil formation. Q. Rev. Biol. 45, 333–350 (1970).

    Article  Google Scholar 

  5. 5

    Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. System. 10, 53–84 (1979).

    CAS  Article  Google Scholar 

  6. 6

    Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175 (1994).

    Article  Google Scholar 

  7. 7

    Cole, C. V. & Heil, R. D. in Terrestrial Nitrogen Cycles(eds Clark, F. E. & Rosswall, T. H.) 363–374 (Ecol. Bul. 33, Stockholm, (1981)).

    Google Scholar 

  8. 8

    Likens, G. E. & Bormann, F. H. Biogeochemistry of a Forested Ecosystem 2nd edn(Springer, New York, (1995)).

    Google Scholar 

  9. 9

    Hedin, L. O., Armesto, J. J. & Johnson, A. H. Patterns of nutrient loss from unpolluted, old growth temperate forests: evaluation of biogeochmecial theory. Ecology 76, 493–509 (1995).

    Article  Google Scholar 

  10. 10

    Hedin, L. O. et al. Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367, 351–354 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Tegen, I. & Fung, I. Y. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. J. Geophys. Res. 99, 22897–22914 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Swap, R., Garstang, M., Greco, S., Talbot, R. & Kallbert, P. Saharan dust in the Amazon Basin. Tellus 44 B, 133–149 (1992).

    ADS  Article  Google Scholar 

  13. 13

    Propero, J. M., Glaccum, R. A. & Nees, R. T. Atmospheric transport of soil dust from Africa to South America. Nature 289, 570–572 (1981).

    ADS  Article  Google Scholar 

  14. 14

    Uematsu, M. et al. Transport of mineral aerosol from Asia over the North Pacific Ocean. J. Geophys. Res. 88, 5343–5452 (1983).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lindberg, S. E. & Owens, J. G. Throughfall studies of deposition to forest edges and gaps in montane ecosystems. Biogeochemistry 19, 173–194 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Lovett, G. M. Atmosphere deposition of nutrients and pollutants to North America: an ecological perspective. Ecol. Appl. 4, 629–650 (1994).

    Article  Google Scholar 

  17. 17

    Weathers, K. C. & Likens, G. E. Clouds in southern Chile: An important source of nitrogen to nitrogen-limited ecosystems. Environ. Sci. Technol. 31, 210–213 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Heath, J. A. & Huebert, B. J. Cloudwater deposition as a source of fixed nitrogen in a Hawaiian montane forest. Biogeochemistry(in the press).

  19. 19

    Cao, M. K. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Aplet, G. H., Hughes, R. F. & Vitousek, P. M. Ecosystem development on Hawaiian lava flows: biomass and species composition. J. Veg. Sci. 9, 17–26 (1998).

    Article  Google Scholar 

  21. 21

    Austin, A. T. & Vitousek, P. M. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113, 519–529 (1998).

    ADS  Article  Google Scholar 

  22. 22

    Schimel, D. S. et al. Climatic, edaphic, and biotic controls over carbon and turnover of carbon in soils. Global Biogeochem. Cyc. 8, 279–293 (1994).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  24. 24

    Aber, J. D. et al. Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. Bioscience 48, 921–934 (1998).

    Article  Google Scholar 

  25. 25

    Schimel, D. S. et al. Climate and nitrogen control on the geography and timescales of terrestrial biogeochemal cycling. Global Biogeochem. Cyc. 10, 677–692 (1996).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Moore, J. G. & Clague, D. A. Volcano growth and evolution of the island of Hawaii. Geol. Soc. Am. Bull. 104, 1471–1484 (1992).

    ADS  Article  Google Scholar 

  27. 27

    Clague, D. A. & Dalrymple, G. B. in Volcanism in Hawaii(eds Decker, R. W. et al.) 5–73 (US Geol. Surv. Prof. Paper 1350, (1987)).

    Google Scholar 

  28. 28

    Wright, T. C. & Helz, R. T. in Volcanism in Hawaii(eds Decker, R. W. et al.) 625–640 (US Geol. Surv. Prof. Paper 1350, (1987)).

    Google Scholar 

  29. 29

    Macdonald, G. A., Abbott, A. T. & Peterson, F. L. Volcanoes in the Sea 2nd edn(Univ. Hawaii Press, Honolulu, (1983)).

    Google Scholar 

  30. 30

    Wagner, W. L., Herbst, D. R. & Sohmer, S. H. Manual of the Flowering Plants of Hawaii(Bishop Museum Spec. Publ. 83, Univ. Hawaii Press, Honolulu, (1990)).

    Google Scholar 

  31. 31

    Jenny, H. Soil Genesis with Ecological Perspectives. (Springer, New York, (1980)).

    Google Scholar 

  32. 32

    Pickett, S. T. A. in Long-Term Studies in Ecology: Approaches and Alternatives(ed. Likens, G. E.) 110–135 (Springer, New York, (1989)).

    Google Scholar 

  33. 33

    Porter, S. C. Hawaiian glacial ages. Quat. Res. 12, 161–187 (1979).

    ADS  Article  Google Scholar 

  34. 34

    Gavenda, R. T. Hawaiian Quaternary paleoenvironments: A review of geological, pedological, and botanical evidence. Pacific Sci. 46, 295–307 (1992).

    Google Scholar 

  35. 35

    Hotchkiss, S. C. Quaternary Vegetation and Climate of Hawaii(thesis, Univ. Minnesota, Minneapolis, (1998)).

    Google Scholar 

  36. 36

    Ludwig, K. R., Szabo, B. J., Moore, J. G. & Simmons, K. R. Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs. Geology 19, 171–174 (1991).

    ADS  Article  Google Scholar 

  37. 37

    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil carbon storage and turnover. Nature 389, 170–173 (1997).

    ADS  CAS  Article  Google Scholar 

  38. 38

    Vitousek, P. M. et al. Soil and ecosystem development across the Hawaiian Islands. GSA Today 7(9), 1–8 (1997).

    Google Scholar 

  39. 39

    Crews, T. et al. Changes in soil phosphorus and ecosystem dynamics across a long soil chronosequence in Hawaii. Ecology 76, 1407–1424 (1995).

    Article  Google Scholar 

  40. 40

    Vitousek, P. M. & Farrington, H. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37, 63–75 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Kitayama, K. & Mueller-Dombois, D. Vegetation changes during long-term soil development in the Hawaiian montane rainforest zone. Vegetatio 120, 1–20 (1995).

    Google Scholar 

  42. 42

    Vitousek, P. M., Turner, D. R. & Kitayama, K. Foliar nutrients during long-term soil development in Hawaiian montane rain forest. Ecology 76, 712–720 (1995).

    Article  Google Scholar 

  43. 43

    Herbert, D. A. Primary Productivity and Resource use in Metrosideros Polymorpha Forest as Influenced by Nutrient Availability and Hurricane Iniki(thesis, Univ. Hawaii at Manoa, Honolulu, (1995)).

    Google Scholar 

  44. 44

    Vitousek, P. M., Walker, L. R., Whiteaker, L. D. & Matson, P. A. Nutrient limitation to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry 23, 197–215 (1993).

    Article  Google Scholar 

  45. 45

    Herbert, D. A. & Fownes, J. H. Phosphorus limitation of forest leaf area and net primary productivity on a weathered tropical soil. Biogeochemistry 29, 223–235 (1995).

    CAS  Article  Google Scholar 

  46. 46

    Graustein, W. C. in Stable Isotopes in Ecological research(eds Rundel, P. W., Ehleinger, J. R. & Nagy, K. A.) 491–512 (Springer, New York, (1989)).

    Google Scholar 

  47. 47

    Capo, R. C., Stewart, B. W. & Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 83, 515–524 (1998).

    Google Scholar 

  48. 48

    Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. & Hendricks, D. M. Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26, 1015–1018 (1998).

    ADS  CAS  Article  Google Scholar 

  49. 49

    Newman, E. I. Phosphorus inputs to terrestrial ecosystems. J. Ecol. 83, 713–726 (1995).

    Article  Google Scholar 

  50. 50

    Graham, W. F. & Duce, R. A. Atmospheric pathways of the phosphorus cycle. Geochim. Cosmochim. Acta 43, 1195–1208 (1979).

    ADS  CAS  Article  Google Scholar 

  51. 51

    Duce, R. A. et al. The atmospheric input of trace species ot the world ocean. Global Biogeochem. Cyc. 5, 193–259 (1991).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geological history of wind. Rev. Geophys. 32, 159–195 (1994).

    ADS  Article  Google Scholar 

  53. 53

    Parrington, J. R., Zoller, W. H. & Aras, N. K. Asian dust: seasonal transport to the Hawaiian Islands. Science 220, 195–197 (1983).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Uematsu, M., Duce, R. A. & Prospero, J. M. Depostion of atmospheric mineral particles to the North Pacific Ocean. J. Atmos. Chem. 3, 123–138 (1985).

    CAS  Article  Google Scholar 

  55. 55

    Jackson, M. L. et al. Geomorphological relationships of tropospherically derived quartz in soils of the Hawaiian Islands. Soil Sci. Soc. Am. J. 35, 515–525 (1971).

    ADS  CAS  Article  Google Scholar 

  56. 56

    Dymond, J., Biscaye, P. E. & Rex, R. W. Eolian origin of mica in Hawaiian soils. Geol. Soc. Am. Bull. 85, 37–40 (1974).

    ADS  CAS  Article  Google Scholar 

  57. 57

    Taylor, S. R. & McClennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    ADS  Article  Google Scholar 

  58. 58

    Nakai, S., Halliday, A. N. & Rea, D. K. Provenance of dust in the Pacific Ocean. Earth Planet. Sci. Lett. 119, 143–157 (1993).

    ADS  CAS  Article  Google Scholar 

  59. 59

    Chen, C. Y. & Frey, F. A. Origin of Hawaiian tholeiite and alkalic basalt. Nature 302, 785–789 (1983).

    ADS  CAS  Article  Google Scholar 

  60. 60

    Feigenson, M. D. Constraints on the origin of Hawaiian lavas. J. Geophys. Res. 91, 9383–9393 (1986).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Zieman, J. J. et al. Atmospheric aerosol trace element chemistry at Mauna Loa Observatory 1. 1979–1985. J. Geophys. Res. 100, 25979–25994 (1995).

    ADS  Article  Google Scholar 

  62. 62

    Birkeland, P. W. Soils and Geomorphology(Oxford Univ. Press, New York, (1984)).

    Google Scholar 

  63. 63

    Bull, W. B. Geomorphic Responses to Climate Change(Oxford Univ. Press, New York, (1991)).

    Google Scholar 

  64. 64

    Paton, T. R., Humphreys, G. S. & Mitchell, P. B. Soils: A New Global View(Yale Univ. Press, New Haven, (1995)).

    Google Scholar 

  65. 65

    Simonson, R. W. Airborne dust and its significance to soils. Geoderma 65, 1–43 (1995).

    ADS  Article  Google Scholar 

  66. 66

    Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles(Prentice Hall, Upper Saddle River, NJ, (1996)).

    Google Scholar 

  67. 67

    Brimhall, G. H. et al. Deformational mass transport and invasive processes in soil evolution. Science 255, 695–702 (1992).

    ADS  CAS  Article  Google Scholar 

  68. 68

    Brimhall, G. H. et al. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333, 819–824 (1988).

    ADS  CAS  Article  Google Scholar 

  69. 69

    DePaolo, D. J. & Wasserburg, G. J. Nd isotopic variations and petrogenic models. Geophys. Res. Lett. 3, 249–252 (1976).

    ADS  CAS  Article  Google Scholar 

  70. 70

    Graham, W. F. & Duce, R. A. Atmospheric input of phosphorus to remote tropical islands. Pacific Sci. 35, 241–255 (1981).

    CAS  Google Scholar 

  71. 71

    Chadwick, O. A., Brimhall, G. H. & Hendricks, D. M. From a black to a gray box: a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390 (1990).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Andrew Mellon Foundation, by the NSF, and by NASA-MTPE. For logistical assistance and access to sites, we are indebted to USDA–National Resources Conservation Service, USGS–Biological Resources Division, Hawaii Volcanoes National Park, Hawaii DL&NR, the Nature Conservancy, and Parker Ranch.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. Chadwick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chadwick, O., Derry, L., Vitousek, P. et al. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999). https://doi.org/10.1038/17276

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing