Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pre-Clinical Studies

Transplantation of newborn thymus plus hematopoietic stem cells can rescue supralethally irradiated mice

Abstract

We attempted to rescue supralethally irradiated (SLI) mice by transplantation of hematopoietic stem cells (HSCs) plus thymus from variously aged donors (fetus, newborn and adult). Although the transplantations of these kinds of HSCs alone showed a very short survival, newborn liver cells (NLCs) (as the source of HSCs) plus newborn thymus (NT) transplantation markedly improved the survival rate. The transplantation attenuated severe damage in the small intestine, which is one of the major causes of death by SLI. In addition, the donor-derived CD4+ T cells significantly increased with additional NT transplantation. The production of interleukin (IL)-7 and keratinocyte growth factor, which plays a crucial role in protection against radiation injury in the intestine, was the highest in NT. Finally, SLI mice that had received NLC plus IL-7−/− NT transplantation plus IL-7 injection showed improved survival, weight recovery and an elevated number of CD4+ T cells compared with the mice that had received NLC plus IL-7−/− NT or plus IL-7 injection alone. These findings suggest that NLCs plus NT transplantation can rescue SLI mice most effectively, and that high production of IL-7 in NT plays a crucial role with induction of CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Ikehara S . Bone marrow transplantation: a new strategy for intractable disease. Drugs Today 2002; 38: 103–111.

    Article  PubMed  Google Scholar 

  2. Ikehara S, Ohtsuki H, Good RA, Asamoto H, Nakamura T, Sekita K et al. Prevention of type I diabetes in nonobese diabetic mice by allogeneic bone marrow transplantation. Proc Natl Acad Sci USA 1985; 22: 7743–7747.

    Article  Google Scholar 

  3. Yasumizu R, Sugiura K, Iwai H, Makino S, Ida T, Imura H et al. Treatment of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue. Proc Natl Acad Sci USA 1987; 84: 6555–6557.

    Article  CAS  PubMed  Google Scholar 

  4. Than S, Ishida H, Inaba M, Fukuba Y, Seino Y, Adachi M et al. Bone marrow transplantation as a strategy for treatment of non-insulin-dependent diabetes mellitus in KK-Ay mice. J Exp Med 1992; 176: 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  5. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N et al. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 1994; 152: 3119–3127.

    CAS  PubMed  Google Scholar 

  6. Nakagawa T, Nagata N, Hosaka N, Ogawa R, Nakamura K, Ikehara S . Prevention of autoimmune inflammatory polyarthritis in male New Zealand black/KN mice by transplantation of bone marrow cells plus bone (stromal cells). Arthritis Rheum 1993; 36: 263–268.

    Article  CAS  PubMed  Google Scholar 

  7. Hosaka N, Nose M, Kyogoku M, Nagata N, Miyashima S, Good RA et al. Thymus transplantation, a critical factor for correction of autoimmune disease in aging MRL/+mice. Proc Natl Acad Sci USA 1996; 93: 8558–8562.

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura M, Toki J, Sugiura K, Hashimoto F, Tomita T, Fujishima H et al. Focal segmental glomerular sclerosis, a type of intractable chronic glomerulonephritis, is a stem cell disorder. J Exp Med 1994; 179: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki Y, Adachi Y, Minamino K, Zhang Y, Iwasaki M, Nakano K et al. A new strategy for treatment of malignant tumor: intra-bone marrow-bone marrow transplantation plus CD4-donor lymphocyte infusion. Stem Cells 2005; 23: 365–370.

    Article  PubMed  Google Scholar 

  10. Ishii T, Futami S, Nishida M, Suzuki T, Sakamoto T, Suzuki N et al. Brief note and evaluation of acute-radiation syndrome and treatment of a Tokai-mura criticality accident patient. J Radiat Res 2001; 42 (Suppl): 167–182.

    Article  Google Scholar 

  11. Gus’kova AK, Baranov AE, Barabanova AV, Moiseev AA, Piatkin EK . Diagnosis, clinical picture and therapy of acute radiation disease in victims of the accident at the Chernobyl nuclear power station. I. Conditions of irradiation, dose levels, bone marrow syndrome and its therapy. Ter Arkh 1989; 61: 95–103.

    PubMed  Google Scholar 

  12. Gus’kova AK, Baranov AE, Barabanova AV, Moiseev AA, Piatkin EK . The diagnosis, clinical picture and treatment of acute radiation sickness in the victims of the Chernobyl Atomic Electric Power Station. II. Non-bone marrow syndromes of radiation lesions and their treatment. Ter Arkh 1989; 61: 99–103.

    PubMed  Google Scholar 

  13. Tatsuno I, Saito Y . Bone marrow transplantation in the patients with malignant tumor. Studies on supralethal total body irradiation. Rinsho Hoshasen 1984; 29: 1393–1398.

    CAS  PubMed  Google Scholar 

  14. Kane AB, Kumar V . Environmental and nutritional pathology. In: Kumar V, Abbas AK, Fausto N (eds). Pathologic Basis of Disease, 7th edn. Elsevier Saunders: Philadelphia, 2004, pp 415–468.

    Google Scholar 

  15. Nagayama H, Ooi J, Tomonari A, Iseki T, Tojo A, Tani K et al. Severe immune dysfunction after lethal neuron irradiation in a JCO nuclear facility accident victim. Int J Hematol 2002; 76: 157–164.

    Article  PubMed  Google Scholar 

  16. Nagayama H, Misawa J, Tanaka A, Ooi J, Iseki T, Tojo A et al. Tangent hematopoietic stem cell rescue using umbilical cord blood for a lethally irradiated nuclear accident victim. Bone Marrow Transplant 2002; 29: 197–204.

    Article  CAS  PubMed  Google Scholar 

  17. Hosaka N, Ryu T, Miyake T, Cui W, Nishida T, Takaki T et al. Treatment of autoimmune diseases in MRL/lpr mice by allogeneic bone marrow transplantation plus adult thymus transplantation. Clin Exp Immunol 2007; 147: 555–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zamisch M, Moore-Scott B, Su DM, Lucas PJ, Manley N, Richie ER et al. Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immnol 2005; 174: 60–67.

    Article  CAS  Google Scholar 

  19. Toki J, Adachi Y, Jin T, Fan T, Takase K, Lian Z et al. Enhancement of IL-7 following irradiation of fetal thymus. Immunobiology 2003; 207: 247–258.

    Article  CAS  PubMed  Google Scholar 

  20. Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B . Interleukin-7 is a critical growth factor in early human T-cell development. Blood 1996; 88: 4239–4245.

    CAS  PubMed  Google Scholar 

  21. Okamoto Y, Douek DC, McFarland RD, Koup RA . Effects of exogenous interleukin-7 on human thymus function. Blood 2002; 99: 2851–2858.

    Article  CAS  Google Scholar 

  22. Chu YW, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, Lucas PJ et al. Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 2004; 104: 1110–1119.

    Article  CAS  PubMed  Google Scholar 

  23. Or R, Abdul-Hai A, Ben-Yehuda A . Reviewing the potential utility of interleukin-7 as a promoter of thymopoiesis and immune recovery. Cytokines Cell Mol Ther 1998; 4: 287–294.

    CAS  Google Scholar 

  24. Abbas AK, Lichtman AH, Pillai S 6th edn. Elsevier Saunders: Philadelphia, 2007, p 299.

  25. Watanabe M, Ueno Y, Yajima T, Iwao Y, Tsuchiya M, Ishikawa H et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995; 95: 2945–2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang H, Spencer AU, Teitelbaum DH . Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine 2005; 31: 419–428.

    Article  CAS  PubMed  Google Scholar 

  27. Maki K, Sunaga S, Komagata Y, Kodaira Y, Mabuchi A, Karasuyama H et al. Interleukin 7 receptor-deficient mice lack gamma delta T cells. Proc Natl Acad Sci USA 1996; 93: 7172–7177.

    Article  CAS  PubMed  Google Scholar 

  28. Welniak LA, Khaled AR, Anver MR, Komschlies KL, Wiltrout RH, Durum S et al. Gastrointestinal cells of IL-7 receptor null mice exhibit increased sensitivity to irradiation. J Immunol 2001; 166: 2924–2928.

    Article  CAS  PubMed  Google Scholar 

  29. Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cheon G et al. Keratinocyte growth factor. Cell Biol Int 1995; 19: 399–411.

    Article  CAS  PubMed  Google Scholar 

  30. Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood 2002; 100: 3269–3278.

    Article  CAS  PubMed  Google Scholar 

  31. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998; 58: 933–939.

    CAS  PubMed  Google Scholar 

  32. Adkins B, Williamson T, Guevara P, Bu Y . Murine neonatal lymphocytes show rapid early cell cycle entry and cell division. J Immunol 2003; 170: 4548–4556.

    Article  CAS  PubMed  Google Scholar 

  33. Adkins B . Peripheral CD4+ lymphocytes derived from fetal versus adult thymic precursors differ phenotypically and functionally. J Immunol 2003; 171: 5157–5164.

    Article  CAS  PubMed  Google Scholar 

  34. Blair A, Thomas DB . The proliferative status of haematopoietic progenitor cells in the developing murine liver and adult bone marrow. J Anat 1998; 193: 443–447.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wolber FM, Leonard E, Michael S, Christie M, Orschell-Traycoff CM, Yoder MC et al. Roles of spleen and liver in development of the murine hematopoietic system. Exp Hematol 2002; 30: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  36. Reinecker HC, Podolsky DK . Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci USA 1995; 92: 8353–8357.

    Article  CAS  PubMed  Google Scholar 

  37. Yang H, Spencer AU, Teitelbaum DH . Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine 2005; 31: 419–428.

    Article  CAS  PubMed  Google Scholar 

  38. Schaffer M, Bongartz M, Hoffmann W, Viebahn R . MHC-class-II-deficiency impairs wound healing. J Surg Res 2007; 138: 100–105.

    Article  PubMed  Google Scholar 

  39. Wojciak B, Crossan JF . The effects of T cells and their products on in vitro healing of epitenon cell microwounds. Immunology 1994; 83: 93–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Markert ML, Boeck A, Hale LP, Kloster AL, McLaughlin TM . Transplantation of thymus tissue in complete DiGeorge syndrome. N Engl J Med 1999; 341: 1180–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Y Tokuyama, Ms R Hayashi and Ms A Kitajima for technical assistance and Ms K Ando for secretarial assistance. This work was supported by Research Grant C from Kansai Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ikehara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ryu, T., Hosaka, N., Miyake, T. et al. Transplantation of newborn thymus plus hematopoietic stem cells can rescue supralethally irradiated mice. Bone Marrow Transplant 41, 659–666 (2008). https://doi.org/10.1038/sj.bmt.1705957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705957

Keywords

  • newborn thymus
  • hematopoietic stem cells
  • transplantation
  • IL-7

This article is cited by

Search

Quick links