Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Adoptive cellular immunotherapy for childhood malignancies

Abstract

Clinical trials have established that T cells have the ability to prevent and treat pathogens and tumors. This is perhaps best exemplified by engraftment of allogeneic T cells in the context of hematopoietic stem-cell transplantation (HSCT), which for over the last 50 years remains one of the best and most robust examples of cell-based therapies for the treatment of hematologic malignancies. Yet, the approach to infuse T cells for treatment of cancer, in general, and pediatric tumors, in particular, generally remains on the sidelines of cancer therapy. This review outlines the current state-of-the-art and provides a rationale for undertaking adoptive immunotherapy trials with emphasis on childhood malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Blaauwbroek R, Groenier K, Kamps W, Meyboom-de Jong B, Postma A . Late effects in adult survivors of childhood cancer: the need for life-long follow-up. Ann Oncol 2007; e-pub ahead of print.

  2. Geenen MM, Cardous-Ubbink MC, Kremer LC, van den Bos C, van der Pal HJ, Heinen RC et al. Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. JAMA 2007; 297: 2705–2715.

    CAS  PubMed  Google Scholar 

  3. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT et al. Childhood Cancer Survivor Study. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355: 1572–1582.

    CAS  PubMed  Google Scholar 

  4. Foster AE, Rooney CM . Improving T cell therapy for cancer. Expert Opin Biol Ther 2006; 6: 215–229.

    CAS  PubMed  Google Scholar 

  5. Greenberg PD, Riddell SR . Deficient cellular immunity—finding and fixing the defects. Science 1999; 285: 546–551.

    CAS  PubMed  Google Scholar 

  6. June CH . Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007; 117: 1466–1476.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenberg SA . Shedding light on immunotherapy for cancer. N Engl J Med 2004; 350: 1461–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leen AM, Rooney CM, Foster AE . Improving T cell therapy for cancer. Annu Rev Immunol 2007; 25: 243–265.

    CAS  PubMed  Google Scholar 

  10. Billingham R, Brent L, Medawar P . Quantitative studies on tissue transplantation immunity: the origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Biol 1954; 143: 58–80.

    CAS  Google Scholar 

  11. Schleuning M . Adoptive allogeneic immunotherapy—history and future perspectives. Transfus Sci 2000; 23: 133–150.

    CAS  PubMed  Google Scholar 

  12. Barnes DWH, Loutit JF . Treatment of murine leukaemia with x-rays and homologous bone marrow: II. Br J Haematol 1957; 3: 241–252.

    CAS  PubMed  Google Scholar 

  13. Brunschwig A, Southam CM, Levin AG . Host resistance to cancer. Clinical experiments by homotransplants, autotransplants and admixture of autologous leucocytes. Ann Surg 1965; 162: 416–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238–241.

    CAS  PubMed  Google Scholar 

  15. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    CAS  PubMed  Google Scholar 

  16. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362: 1375–1377.

    PubMed  Google Scholar 

  17. Khanna R, Bell S, Sherritt M, Galbraith A, Burrows SR, Rafter L et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 1999; 96: 10391–10396.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho HI, Hong YS, Lee MA, Kim EK, Yoon SH, Kim CC et al. Adoptive transfer of Epstein-Barr virus-specific cytotoxic T-lymphocytes for the treatment of angiocentric lymphomas. Int J Hematol 2006; 83: 66–73.

    PubMed  Google Scholar 

  19. Pakakasama S, Eames GM, Morriss MC, Huls MH, Rooney CM, Heslop HE et al. Treatment of Epstein-Barr virus lymphoproliferative disease after hematopoietic stem-cell transplantation with hydroxyurea and cytotoxic T-cell lymphocytes. Transplantation 2004; 78: 755–757.

    PubMed  Google Scholar 

  20. Gottschalk S, Bollard CM, Straathof KC, Louis CU, Savoldo B, Dotti G et al. T cell therapies. Ernst Schering Found Symp Proc 2006; 4: 69–82.

    Google Scholar 

  21. Savoldo B, Goss JA, Hammer MM, Zhang L, Lopez T, Gee AP et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 2006; 108: 2942–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottschalk S, Rooney CM, Heslop HE . Post-transplant lymphoproliferative disorders. Annu Rev Med 2005; 56: 29–44.

    CAS  PubMed  Google Scholar 

  23. Sun Q, Burton R, Reddy V, Lucas KG . Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma. Br J Haematol 2002; 118: 799–808.

    PubMed  Google Scholar 

  24. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    CAS  PubMed  Google Scholar 

  25. Young LS, Rickinson AB . Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4: 757–768.

    CAS  PubMed  Google Scholar 

  26. Bollard CM, Heslop HE, Brenner MK . Gene-marking studies of hematopoietic cells. Int J Hematol 2001; 73: 14–22.

    CAS  PubMed  Google Scholar 

  27. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2: 551–555.

    CAS  PubMed  Google Scholar 

  28. Dupont J, Latouche JB, Ma C, Sadelain M . Artificial antigen-presenting cells transduced with telomerase efficiently expand epitope-specific, human leukocyte antigen-restricted cytotoxic T cells. Cancer Res 2005; 65: 5417–5427.

    CAS  PubMed  Google Scholar 

  29. Schilbach K, Kerst G, Walter S, Eyrich M, Wernet D, Handgretinger R et al. Cytotoxic minor histocompatibility antigen HA-1-specific CD8+ effector memory T cells: artificial APCs pave the way for clinical application by potent primary in vitro induction. Blood 2005; 106: 144–149.

    CAS  PubMed  Google Scholar 

  30. Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 2003; 9: 619–624.

    CAS  PubMed  Google Scholar 

  31. Latouche JB, Sadelain M . Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 2000; 18: 405–409.

    CAS  PubMed  Google Scholar 

  32. Hirano N, Butler MO, Xia Z, Berezovskaya A, Murray AP, Ansen S et al. Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses. Clin Cancer Res 2006; 12: 2967–2975.

    CAS  PubMed  Google Scholar 

  33. Butler MO, Lee JS, Ansen S, Neuberg D, Hodi FS, Murray AP et al. Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 2007; 13: 1857–1867.

    CAS  PubMed  Google Scholar 

  34. Foster AE, Leen AM, Lee T, Okamura T, Lu A, Vera J et al. Autologous designer antigen-presenting cells by gene modification of T lymphocyte blasts with IL-7 and IL-12. J Immunother (1997) 2007; 30: 506–516.

    CAS  Google Scholar 

  35. Melenhorst JJ, Solomon SR, Shenoy A, Hensel NF, McCoy Jr JP, Keyvanfar K et al. Robust expansion of viral antigen-specific CD4+ and CD8+ T cells for adoptive T cell therapy using gene-modified activated T cells as antigen presenting cells. J Immunother (1997) 2006; 29: 436–443.

    Google Scholar 

  36. Mauri D, Wyss-Coray T, Gallati H, Pichler WJ . Antigen-presenting T cells induce the development of cytotoxic CD4+ T cells. I. Involvement of the CD80-CD28 adhesion molecules. J Immunol 1995; 155: 118–127.

    CAS  PubMed  Google Scholar 

  37. Cooper LJ, Al-Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A et al. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 2005; 105: 1622–1631.

    CAS  PubMed  Google Scholar 

  38. Jurgens LA, Khanna R, Weber J, Orentas RJ . Transduction of primary lymphocytes with Epstein-Barr virus (EBV) latent membrane protein-specific T-cell receptor induces lysis of virus-infected cells: a novel strategy for the treatment of Hodgkin's disease and nasopharyngeal carcinoma. J Clin Immunol 2006; 26: 22–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Demachi-Okamura A, Ito Y, Akatsuka Y, Tsujimura K, Morishima Y, Takahashi T et al. Epstein-Barr virus (EBV) latent membrane protein-1-specific cytotoxic T lymphocytes targeting EBV-carrying natural killer cell malignancies. Eur J Immunol 2006; 36: 593–602.

    CAS  PubMed  Google Scholar 

  40. Straathof KC, Leen AM, Buza EL, Taylor G, Huls MH, Heslop HE et al. Characterization of latent membrane protein 2 specificity in CTL lines from patients with EBV-positive nasopharyngeal carcinoma and lymphoma. J Immunol 2005; 175: 4137–4147.

    CAS  PubMed  Google Scholar 

  41. Sing AP, Ambinder RF, Hong DJ, Jensen M, Batten W, Petersdorf E et al. Isolation of Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes that lyse Reed-Sternberg cells: implications for immune-mediated therapy of EBV+ Hodgkin's disease. Blood 1997; 89: 1978–1986.

    CAS  PubMed  Google Scholar 

  42. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007; 110: 2838–2845.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lucas KG, Salzman D, Garcia A, Sun Q . Adoptive immunotherapy with allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes for recurrent, EBV-positive Hodgkin disease. Cancer 2004; 100: 1892–1901.

    PubMed  Google Scholar 

  44. Chapman AL, Rickinson AB, Thomas WA, Jarrett RF, Crocker J, Lee SP et al. Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin's disease patients: implications for a T-cell-based therapy. Cancer Res 2001; 61: 6219–6226.

    CAS  PubMed  Google Scholar 

  45. Rooney CM, Roskrow MA, Suzuki N, Ng CY, Brenner MH, Heslop H . Treatment of relapsed Hodgkin's disease using EBV-specific cytotoxic T cells. Ann Oncol 1998; 9 (Suppl 5): S129–S132.

    PubMed  Google Scholar 

  46. Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin's disease. J Exp Med 2004; 200: 1623–1633.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gandhi MK, Wilkie GM, Dua U, Mollee PN, Grimmett K, Williams T et al. Immunity, homing and efficacy of allogeneic adoptive immunotherapy for posttransplant lymphoproliferative disorders. Am J Transplant 2007; 7: 1293–1299.

    CAS  PubMed  Google Scholar 

  48. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 2007; 110: 1123–1131.

    CAS  PubMed  Google Scholar 

  49. Haque T, Wilkie GM, Taylor C, Amlot P, Murad P, Iley A et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 2002; 360: 436–442.

    PubMed  Google Scholar 

  50. Karlsson H, Brewin J, Kinnon C, Veys P, Amrolia PJ . Generation of trispecific cytotoxic T cells recognizing cytomegalovirus, adenovirus, and Epstein-Barr virus: an approach for adoptive immunotherapy of multiple pathogens. J Immunother (1997) 2007; 30: 544–556.

    Google Scholar 

  51. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160–1166.

    CAS  PubMed  Google Scholar 

  52. Chatziandreou I, Gilmour KC, McNicol AM, Costabile M, Sinclair J, Cubitt D et al. Capture and generation of adenovirus specific T cells for adoptive immunotherapy. Br J Haematol 2007; 136: 117–126.

    CAS  PubMed  Google Scholar 

  53. Feuchtinger T, Lang P, Hamprecht K, Schumm M, Greil J, Jahn G et al. Isolation and expansion of human adenovirus-specific CD4+ and CD8+ T cells according to IFN-gamma secretion for adjuvant immunotherapy. Exp Hematol 2004; 32: 282–289.

    CAS  PubMed  Google Scholar 

  54. Becker C, Pohla H, Frankenberger B, Schuler T, Assenmacher M, Schendel DJ et al. Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med 2001; 7: 1159–1162.

    CAS  PubMed  Google Scholar 

  55. Perruccio K, Tosti A, Burchielli E, Topini F, Ruggeri L, Carotti A et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 2005; 106: 4397–4406.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Amrolia PJ, Muccioli-Casadei G, Huls H, Adams S, Durett A, Gee A et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 2006; 108: 1797–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guinan EC, Boussiotis VA, Neuberg D, Brennan LL, Hirano N, Nadler LM et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 1999; 340: 1704–1714.

    CAS  PubMed  Google Scholar 

  58. Reisner Y, Gur H, Reich-Zeliger S, Martelli MF, Bachar-Lustig E . Hematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann NY Acad Sci 2005; 1044: 70–83.

    CAS  PubMed  Google Scholar 

  59. Herberman RB, Nunn ME, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16: 216–229.

    CAS  PubMed  Google Scholar 

  60. Herberman RB, Nunn ME, Holden HT, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975; 16: 230–239.

    CAS  PubMed  Google Scholar 

  61. Karre K, Ljunggren HG, Piontek G, Kiessling R . Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319: 675–678.

    CAS  PubMed  Google Scholar 

  62. Sentman CL, Barber MA, Barber A, Zhang T . NK cell receptors as tools in cancer immunotherapy. Adv Cancer Res 2006; 95: 249–292.

    CAS  PubMed  Google Scholar 

  63. Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A . Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 2005; 17: 211–217.

    CAS  PubMed  Google Scholar 

  64. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    CAS  PubMed  Google Scholar 

  65. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    CAS  PubMed  Google Scholar 

  66. Ren XB, Yu JP, Cao S, Ren BZ, Li H, Liu H et al. Antitumor effect of large doses IL-2-activated HLA haploidentical peripheral blood stem cells on refractory metastatic solid tumor treatment. Cancer Biother Radiopharm 2007; 22: 223–234.

    CAS  PubMed  Google Scholar 

  67. Chung Y, Qin H, Kang CY, Kim S, Kwak LW, Dong C . An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood 2007; 110: 2013–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M . Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci 2006; 97: 807–812.

    CAS  PubMed  Google Scholar 

  69. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5: 677–685.

    CAS  PubMed  Google Scholar 

  70. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkom M et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 2000; 192: 1637–1644.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002; 99: 16168–16173.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 2007; 117: 492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357.

    CAS  PubMed  Google Scholar 

  74. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother (1997) 2002; 25: 243–251.

    CAS  Google Scholar 

  76. Powell Jr DJ, Dudley ME, Robbins PF, Rosenberg SA . Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 2005; 105: 241–250.

    CAS  PubMed  Google Scholar 

  77. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eshhar Z . Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 1997; 45: 131–136.

    CAS  PubMed  Google Scholar 

  79. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12: 6106–6115.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitsuyasu RT, Anton AP, Deeks SG, Scadden DT, Connick E, Downs MT et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000; 96: 785–793.

    CAS  PubMed  Google Scholar 

  81. Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000; 96: 467–474.

    CAS  PubMed  Google Scholar 

  82. Lamers CH, Langeveld SC, Groot-van Ruijven CM, Debets R, Sleijfer S, Gratama JW . Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol Immunother 2007; 56: 1875–1883.

    PubMed  Google Scholar 

  83. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24: e20–e22.

    PubMed  Google Scholar 

  84. Jensen MC, Popplewell L, DiGiusto DL, Kalos M, Cooper LJN, Raubitschek A et al. A first-in-human clinical trial of adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther 2007; 15: S142.

    Google Scholar 

  85. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang X, Wilber AC, Bao L, Tuong D, Tolar J, Orchard PJ et al. Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 2006; 107: 483–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Frommolt R, Rohrbach F, Theobald M . Sleeping Beauty transposon system—future trend in T-cell-based gene therapies? Future Oncol 2006; 2: 345–349.

    CAS  PubMed  Google Scholar 

  88. Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ . Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp Hematol 2007; 35: 1083–1090.

    CAS  PubMed  Google Scholar 

  89. Numbenjapon T, Serrano LM, Singh H, Kowolik CM, Olivares S, Gonzalez N et al. Characterization of an artificial antigen-presenting cell to propagate cytolytic CD19-specific T cells. Leukemia 2006; 20: 1889–1892.

    CAS  PubMed  Google Scholar 

  90. Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res 2007; 67: 5957–5964.

    CAS  PubMed  Google Scholar 

  91. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE et al. Epstein barr virus-specific cytotoxic T lymphocytes expressing the anti-CD30{zeta} artificial chimeric T-cell receptor for immunotherapy of Hodgkin's disease. Blood 2007; 110: 2620–2630.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 2007; 15: 825–833.

    CAS  PubMed  Google Scholar 

  93. Gonzalez S, Naranjo A, Serrano LM, Chang WC, Wright CL, Jensen MC et al. Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma. J Gene Med 2004; 6: 704–711.

    CAS  PubMed  Google Scholar 

  94. Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II et al. Selecting highly affine and well expressed TCRs for gene therapy of melanoma. Blood 2007; e-pub ahead of print.

  95. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Stauss HJ, Thomas S, Cesco-Gaspere M, Hart DP, Xue SA, Holler A et al. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells. Blood Cells Mol Dis 2007; e-pub ahead of print.

  97. Thomas S, Hart DP, Xue SA, Cesco-Gaspere M, Stauss HJ . T-cell receptor gene therapy for cancer: the progress to date and future objectives. Expert Opin Biol Ther 2007; 7: 1207–1218.

    CAS  PubMed  Google Scholar 

  98. Spaapen R, van den Oudenalder K, Ivanov R, Bloem A, Lokhorst H, Mutis T et al. Rebuilding human leukocyte antigen class II-restricted minor histocompatibility antigen specificity in recall antigen-specific T cells by adoptive T cell receptor transfer: implications for adoptive immunotherapy. Clin Cancer Res 2007; 13: 4009–4015.

    CAS  PubMed  Google Scholar 

  99. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 2007; 109: 235–243.

    CAS  PubMed  Google Scholar 

  100. Mommaas B, van Halteren AG, Pool J, van der Veken L, Wieles B, Heemskerk MH et al. Adult and cord blood T cells can acquire HA-1 specificity through HA-1 T-cell receptor gene transfer. Haematologica 2005; 90: 1415–1421.

    CAS  PubMed  Google Scholar 

  101. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumor activity of murine-human hybrid T-Cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66: 8878–8886.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stauss HJ, Cesco-Gaspere M, Thomas S, Hart DP, Xue SA, Holler A et al. Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 2007; 15: 1744–1750.

    CAS  PubMed  Google Scholar 

  105. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66: 10995–11004.

    CAS  PubMed  Google Scholar 

  106. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK . A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12: 933–941.

    CAS  PubMed  Google Scholar 

  107. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    CAS  PubMed  Google Scholar 

  108. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J Immunol 2002; 169: 5780–5786.

    CAS  PubMed  Google Scholar 

  109. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18: 712–725.

    CAS  PubMed  Google Scholar 

  110. Finney HM, Akbar AN, Lawson AD . Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J Immunol 2004; 172: 104–113.

    CAS  PubMed  Google Scholar 

  111. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

    CAS  PubMed  Google Scholar 

  112. Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster A et al. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor specific cytotoxic T lymphocytes. Blood 2007; 110: 2793–2802.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA . Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175: 7226–7234.

    CAS  PubMed  Google Scholar 

  114. Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007; 109: 5168–5177.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu K, Rosenberg SA . Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 2001; 167: 6356–6365.

    CAS  PubMed  Google Scholar 

  116. Kasid A, Morecki S, Aebersold P, Cornetta K, Culver K, Freeman S et al. Human gene transfer: characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc Natl Acad Sci USA 1990; 87: 473–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cooper LJ, Al-Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A et al. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 2004; 105: 1622–1631.

    PubMed  Google Scholar 

  118. Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK . Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 2002; 99: 2009–2016.

    CAS  PubMed  Google Scholar 

  119. Kershaw MH, Westwood JA, Hwu P . Dual-specific T cells combine proliferation and antitumor activity. Nat Biotechnol 2002; 20: 1221–1227.

    CAS  PubMed  Google Scholar 

  120. Gough M, Crittenden M, Thanarajasingam U, Sanchez-Perez L, Thompson J, Jevremovie D et al. Gene therapy to manipulate effector T cell trafficking to tumors for immunotherapy. J Immunol 2005; 174: 5766–5773.

    CAS  PubMed  Google Scholar 

  121. Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J et al. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood 2002; 99: 3179–3187.

    CAS  PubMed  Google Scholar 

  122. Lacuesta K, Buza E, Hauser H, Granville L, Pule M, Corboy G et al. Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-β receptor. J Immunother 2006; 29: 250–260.

    CAS  PubMed  Google Scholar 

  123. Dotti G, Savoldo B, Pule M, Straathof KC, Biagi E, Yvon E et al. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 2005; 105: 4677–4684.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA . Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 2007; 15: 962–970.

    CAS  PubMed  Google Scholar 

  125. Berger C, Blau CA, Huang ML, Iuliucci JD, Dalgarno DC, Gaschet J et al. Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 2004; 103: 1261–1269.

    CAS  PubMed  Google Scholar 

  126. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005; 105: 4247–4254.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lupton SD, Brunton LL, Kalberg VA, Overell RW . Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol 1991; 11: 3374–3378.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. van Meerten T, Claessen MJ, Hagenbeek A, Ebeling SB . The CD20/alphaCD20 ‘suicide’ system: novel vectors with improved safety and expression profiles and efficient elimination of CD20-transgenic T cells. Gene Ther 2006; 13: 789–797.

    CAS  PubMed  Google Scholar 

  129. Sangiolo D, Lesnikova M, Nash RA, Jensen MC, Nikitine A, Kiem HP et al. Lentiviral vector conferring resistance to mycophenolate mofetil and sensitivity to ganciclovir for in vivo T-cell selection. Gene Ther 2007; 14: 1549–1554.

    CAS  PubMed  Google Scholar 

  130. Rettig MP, Ritchey JK, Meyerrose TE, Haug JS, DiPersio JF . Transduction and selection of human T cells with novel CD34/thymidine kinase chimeric suicide genes for the treatment of graft-versus-host disease. Mol Ther 2003; 8: 29–41.

    CAS  PubMed  Google Scholar 

  131. O'Brien TA, Tuong DT, Basso LM, McIvor RS, Orchard PJ . Coexpression of the uracil phosphoribosyltransferase gene with a chimeric human nerve growth factor receptor/cytosine deaminase fusion gene, using a single retroviral vector, augments cytotoxicity of transduced human T cells exposed to 5-fluorocytosine. Hum Gene Ther 2006; 17: 518–530.

    CAS  PubMed  Google Scholar 

  132. Orchard PJ, Blazar BR, Burger S, Levine B, Basso L, Nelson DM et al. Clinical-scale selection of anti-CD3/CD28-activated T cells after transduction with a retroviral vector expressing herpes simplex virus thymidine kinase and truncated nerve growth factor receptor. Hum Gene Ther 2002; 13: 979–988.

    CAS  PubMed  Google Scholar 

  133. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK . Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 2007; 13: 913–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bonini C, Ciceri F, Marktel S, Bordignon C . Suicide-gene-transduced T-cells for the regulation of the graft-versus-leukemia effect. Vox Sang 1998; 74 (Suppl 2): 341–343.

    CAS  PubMed  Google Scholar 

  135. Traversari C, Marktel S, Magnani Z, Mangia P, Russo V, Ciceri F et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 2007; 109: 4708–4715.

    CAS  PubMed  Google Scholar 

  136. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    CAS  PubMed  Google Scholar 

  137. Singh H, Serrano LM, Pfeiffer T, Olivares S, McNamara G, Smith DD et al. Combining adoptive cellular and immunocytokine therapies to improve treatment of B-lineage malignancy. Cancer Res 2007; 67: 2872–2880.

    CAS  PubMed  Google Scholar 

  138. Schultze JL, Anderson KC, Gilleece MH, Gribben JG, Nadler LM . A pilot study of combined immunotherapy with autologous adoptive tumour-specific T-cell transfer, vaccination with CD40-activated malignant B cells and interleukin 2. Br J Haematol 2001; 113: 455–460.

    CAS  PubMed  Google Scholar 

  139. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005; 11: 1230–1237.

    CAS  PubMed  Google Scholar 

  140. Tran CA, Burton L, Russom D, Wagner JR, Jensen MC, Forman SJ et al. Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother (1997) 2007; 30: 644–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J N Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, L. Adoptive cellular immunotherapy for childhood malignancies. Bone Marrow Transplant 41, 183–192 (2008). https://doi.org/10.1038/sj.bmt.1705930

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705930

Keywords

This article is cited by

Search

Quick links