Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hematopoietic stem cell transplantation for primary immunodeficiency disease

Abstract

Hematopoietic stem cell transplantation is the definitive therapy for a variety of rare primary cellular immunodeficiency syndromes diagnosed in children. All primary immunodeficiencies benefit from early diagnosis and transplantation before the development of serious infections, which contribute to a significant increased risk of mortality following transplant. In the absence of a matched sibling, parental haplocompatible, matched unrelated donor and cord blood stem cells have all been utilized with varying degrees of success and immune reconstitution. The role of pretransplant conditioning in patients with SCID disease in terms of its effects upon T- and B-cell immune reconstitution and late effects is still under debate and will require further study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Muller S, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W . Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 2001; 98: 1847–1851.

    Article  CAS  Google Scholar 

  2. Cavazzana-Calvo M, Fischer A . Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest 2007; 117: 1456–1465.

    Article  CAS  Google Scholar 

  3. Dror Y, Gallagher R, Wara DW, Colombe BW, Merino A, Benkerrou M et al. Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T-cell-depleted haplocompatible bone marrow transplantation. Blood 1993; 81: 2021–2030.

    CAS  PubMed  Google Scholar 

  4. Bertrand Y, Landais P, Friedrich W, Gerritsen B, Morgan G, Fasth A et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the European Society for Immunodeficiency. J Pediatr 1999; 134: 740–748.

    Article  CAS  Google Scholar 

  5. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 340: 508–516.

    Article  CAS  Google Scholar 

  6. Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–1999. Lancet 2003; 361: 553–560.

    Article  Google Scholar 

  7. Myers LA, Patel DD, Puck JM, Buckley RH . Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 2002; 99: 872–878.

    Article  CAS  Google Scholar 

  8. Cavazzana-Calvo M, Carlier F, Le Deist F, Morillon E, Taupin P, Gautier D et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood 2007; 109: 4575–4581.

    Article  CAS  Google Scholar 

  9. Haddad E, Landais P, Friedrich W, Gerritsen B, Cavazzana-Calvo M, Morgan G et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood 1998; 91: 3646–3653.

    CAS  PubMed  Google Scholar 

  10. Murphy WJ, Kumar V, Bennett M . Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med 1987; 165: 1212–1217.

    Article  CAS  Google Scholar 

  11. O'Marcaigh AS, DeSantes K, Hu D, Pabst H, Horn B, Li L et al. Bone marrow transplantation for T-B- severe combined immunodeficiency disease in Athabascan-speaking native Americans. Bone Marrow Transplant 2001; 27: 703–709.

    Article  CAS  Google Scholar 

  12. Gruhn B, Seidel J, Zintl F, Varon R, Tönnies H, Neitzel H et al. Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure. Orphanet J Rare Dis 2007; 2: 5.

    Article  Google Scholar 

  13. Renella R, Picard C, Neven B, Ouachee-Chardin M, Casanova J-L, Deist FL et al. Human leucocyte antigen-identical haematopoietic stem cell transplantation in major histocompatiblity complex class II immunodeficiency: reduced survival correlates with an increased incidence of acute graft-versus-host disease and pre-existing viral infections. Br J Haematol 2006; 134: 510–516.

    Article  Google Scholar 

  14. Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B et al. Bone marrow transplantation for severe combined immune deficiency. JAMA 2006; 295: 508–518.

    Article  CAS  Google Scholar 

  15. Dalal I, Reid B, Doyle J, Freedman M, Calderwood S, Saunders F et al. Matched unrelated bone marrow transplantation for combined immunodeficiency. Bone Marrow Transplant 2000; 25: 613–621.

    Article  CAS  Google Scholar 

  16. Knutsen A, Wall D . Umbilical cord blood transplantation in severe T-cell immunodeficiency disorders: two-year experience. J Clin Immunol 2000; 20: 466–476.

    Article  CAS  Google Scholar 

  17. Rao K, Amrolia P, Jones A, Cale C, Naik P, King D et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood 2005; 105: 879–885.

    Article  CAS  Google Scholar 

  18. Bhattacharya A, Slatter M, Chapman C, Barge D, Jackson A, Flood T et al. Single centre experience of umbilical cord stem cell transplantation for primary immunodeficiency. Bone marrow Transplant 2005; 36: 295–299.

    Article  CAS  Google Scholar 

  19. Wijnaendts L, Le Deist F, Griscelli C, Fischer A . Development of immunologic functions after bone marrow transplantation in 33 patients with severe combined immunodeficiency. Blood 1989; 74: 2212–2219.

    CAS  PubMed  Google Scholar 

  20. Roberts JL, Lengi A, Brown SM, Chen M, Zhou Y-J, O'Shea JJ et al. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood 2004; 103: 2009–2018.

    Article  CAS  Google Scholar 

  21. Knutsen AP, Wall DA . Kinetics of T-cell development of umbilical cord blood transplantation in severe T-cell immunodeficiency disorders. J Allergy Clin Immunol 1999; 103 (5 Part 1): 823–832.

    Article  CAS  Google Scholar 

  22. Hönig M, Albert MH, Schulz A, Sparber-Sauer M, Schütz C, Belohradsky B et al. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood 2007; 109: 3595–3602.

    Article  Google Scholar 

  23. Stiehm ER, Roberts RL, Hanley-Lopez J, Wakim ME, Pallavicini MG, Cowan MJ et al. Bone marrow transplantation in severe combined immunodeficiency from a sibling who had received a paternal bone marrow transplant. N Engl J Med 1996; 335: 1811–1814.

    Article  CAS  Google Scholar 

  24. Haddad E, Le Deist F, Aucouturier P, Cavazzana-Calvo M, Blanche S, De Saint Basile G et al. Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: a single-center study of 22 patients. Blood 1999; 94: 2923–2930.

    CAS  PubMed  Google Scholar 

  25. Patel DD, Gooding ME, Parrott RE, Curtis KM, Haynes BF, Buckley RH . Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 2000; 342: 1325–1332.

    Article  CAS  Google Scholar 

  26. Laffort C, Le Deist F, Favre M, Caillat-Zucman S, Radford-Weiss I, Debré M et al. Severe cutaneous papillomavirus disease after haemopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common gammac cytokine receptor subunit or JAK-3 deficiency. Lancet 2004; 363: 2051–2054.

    Article  CAS  Google Scholar 

  27. Tjønnfjord GE, Steen R, Veiby OP, Friedrich W, Egeland T . Evidence for engraftment of donor-type multipotent CD34+ cells in a patient with selective T-lymphocyte reconstitution after bone marrow transplantation for B-SCID. Blood 1994; 84: 3584–3589.

    PubMed  Google Scholar 

  28. Bertrand Y, Müller SM, Casanova JL, Morgan G, Fischer A, Friedrich W . Reticular dysgenesis: HLA non-identical bone marrow transplants in a series of 10 patients. Bone Marrow Transplant 2002; 29: 759–762.

    Article  CAS  Google Scholar 

  29. McGhee SA, Stiehm ER, Cowan M, Krogstad P, McCabe ERB . Two-tiered universal newborn screening strategy for severe combined immunodeficiency. Mol Genet Metab 2005; 86: 427–430.

    Article  CAS  Google Scholar 

  30. Chan K, Puck JM . Development of population-based newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 2005; 115: 391–398.

    Article  Google Scholar 

  31. Filipovich A, Stone JV, Tomany SC, Ireland M, Kollman C, Pelz CJ et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott–Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001; 97: 1598–1603.

    Article  CAS  Google Scholar 

  32. Henter J, Samuelsson-Horne A, Aricò M, Egeler R, Elinder G, Filipovich A et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 2002; 100: 2367–2373.

    Article  CAS  Google Scholar 

  33. Eapen M, DeLaat C, Baker K, Cairo M, Cowan M, Kurtzberg J et al. Hematopoietic cell transplantation for Chediak–Higashi syndrome. Bone Marrow Transplant 2007; 39: 411–415.

    Article  CAS  Google Scholar 

  34. Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, Cham B et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006; 107: 4628–4635.

    Article  CAS  Google Scholar 

  35. Zeidler C, Welte K, Barak Y, Barriga F, Bolyard A, Boxer L et al. Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood 2000; 95: 1195–1198.

    CAS  PubMed  Google Scholar 

  36. Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordigoni P, Di Bartolomeo P et al. Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985–2000. Blood 2002; 100: 4344–4350.

    Article  CAS  Google Scholar 

  37. Westgren M . In utero stem cell transplantation. Semin Reprod Med 2006; 24: 348–357.

    Article  CAS  Google Scholar 

  38. Amrolia PJ, Muccioli-Casadei G, Huls H, Adams S, Durett A, Gee A et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood 2006; 108: 1797–1808.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorak, C., Cowan, M. Hematopoietic stem cell transplantation for primary immunodeficiency disease. Bone Marrow Transplant 41, 119–126 (2008). https://doi.org/10.1038/sj.bmt.1705890

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705890

Keywords

This article is cited by

Search

Quick links