Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual

Abstract

Allogeneic stem cell transplantation is often complicated by reactivation of herpesviruses. Mesenchymal stem cells (MSC) are immunomodulatory and may be used to treat graft-versus-host disease. We investigated if herpesviruses infect and can be transmitted by MSC, and if MSC suppress immune responses to various infectious agents. Mesenchymal stem cells from healthy seropositive donors were evaluated with polymerase chain reaction for the most common herpesviruses: cytomegalovirus (CMV), herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, Epstein–Barr virus (EBV) and varicella zoster virus. The cytopathological effect (CPE) was investigated and viral antigens analyzed by immunofluorescence after in vitro exposure to CMV, HSV-1 and EBV. We also studied MSC effect on lymphocyte stimulation induced by various infectious agents. No viral DNA could be detected in MSC isolated from healthy seropositive individuals. However, a CPE was noted and intracellular viral antigens detected after infection in vitro by CMV and HSV-1, but not by EBV. The CMV and HSV-1 infections were productive. Lymphocyte proliferation by herpesviruses, candida mannan and protein A from Staphylococcus aureus was suppressed by MSC. The data indicate that the risk of herpesvirus transmission by transplantation of MSC from healthy seropositive donors is low. However, MSC may be susceptible to infection if infused in a patient with CMV or HSV-1 viremia. MSC transplantation may compromise the host's defense against infectious agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Storb R, Thomas ED . Allogeneic bone-marrow transplantation. Immunol Rev 1983; 71: 77–102.

    Article  CAS  PubMed  Google Scholar 

  2. Thomas ED, Buckner CD, Banaji M, Clift RA, Fefer A, Flournoy N et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood 1977; 49: 511–533.

    CAS  PubMed  Google Scholar 

  3. Ringden O . Allogeneic bone marrow transplantation for hematological malignancies – controversies and recent advances. Acta Oncol 1997; 36: 549–564.

    Article  CAS  PubMed  Google Scholar 

  4. Storb R, Thomas ED . Graft-versus-host disease in dog and man: the Seattle experience. Immunol Rev 1985; 88: 215–238.

    Article  CAS  PubMed  Google Scholar 

  5. Ringden O . Clinical spectrum of graft-versus-host-disease. In: Ferrara JLM, Burakoff S (eds). Graft vs Host Disease. Marcel Dekker Inc.: New York, 1996, pp 525–559.

    Google Scholar 

  6. Meyers JD, Thomas ED . Infection complicating bone marrow transplantation. In: Young LS (ed). Clinical approach to infection in the immunocompromised host. Plenum Press: New York, 1982, pp 507–551.

    Google Scholar 

  7. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP . Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230–247.

    Article  CAS  PubMed  Google Scholar 

  8. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  9. Bruder SP, Jaiswal N, Haynesworth SE . Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278–294.

    Article  CAS  PubMed  Google Scholar 

  10. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  11. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI . Characterization of cells with osteogenic potential from human marrow. Bone 1992; 13: 81–88.

    Article  CAS  PubMed  Google Scholar 

  12. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  13. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC . Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389–397.

    Article  CAS  PubMed  Google Scholar 

  14. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  15. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729.

    Article  CAS  PubMed  Google Scholar 

  16. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48.

    Article  PubMed  Google Scholar 

  17. McIntosh K . Stomal cell modulation of the immune system. Graft 2000; 3: 324–328.

    Google Scholar 

  18. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI . Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557–564.

    CAS  PubMed  Google Scholar 

  19. Frassoni FLM, Bacigalupo A, Gluckman E, Rocha V, Bruno B, Lazarus H et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hematopoietic stem cell transplants, reduce acute and chronic graft-verus-host disease: a matched pair analysis. Bone Marrow Transplant 2002; 29 (Suppl 2): S2 (abstract).

    Google Scholar 

  20. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

  21. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27: 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  22. Le Blanc K, Ringden O . Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11: 321–334.

    Article  CAS  PubMed  Google Scholar 

  23. Lennon DP, Haynesworth SE, Bruder SP, Jaiswal N, Caplan AI . Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. In vitro Cell Dev Biol 1996; 32: 602–611.

    Article  Google Scholar 

  24. Soderberg C, Giugni TD, Zaia JA, Larsson S, Wahlberg JM, Moller E . CD13 (human aminopeptidase N) mediates human cytomegalovirus infection. J Virol 1993; 67: 6576–6585.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Knipe DM, Howley PM . Epstein-Barr virus and its replication. In: Kieff E, Rickinson AB (eds). Fields Virology, 4 th edn. Lippincott, Williams & Wilkins: Philadelphia, 2001, pp 2511–2627.

    Google Scholar 

  26. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O . HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896.

    Article  CAS  PubMed  Google Scholar 

  27. Pereira L, Hoffman M, Gallo D, Cremer N . Monoclonal antibodies to human cytomegalovirus: three surface membrane proteins with unique immunological and electrophoretic properties specify cross-reactive determinants. Infect Immun 1982; 36: 924–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tollemar J, Ringden O, Holmberg K . Candida albicans: mannan and protein activation of cells from various human lymphoid organs. Scand J Immunol 1989; 30: 473–480.

    Article  CAS  PubMed  Google Scholar 

  29. Ringden O, Paulin T, Sundqvist VA, Wahren B, Pihlstedt P . Induction of immunoglobulin secretion and DNA synthesis in human lymphocytes in vitro by cytomegalovirus preparations. Scand J Immunol 1986; 24: 273–281.

    Article  CAS  PubMed  Google Scholar 

  30. Ringden O, Rynnel D . Activation of human B and T lymphocytes by protein A of Staphylococcus aureus. Eur J Immunol 1978; 8: 47–52.

    Article  CAS  PubMed  Google Scholar 

  31. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307–316.

    Article  CAS  PubMed  Google Scholar 

  32. Maitra B, Szekely E, Gjini K, Laughlin MJ, Dennis J, Haynesworth SE et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004; 33: 597–604.

    Article  CAS  PubMed  Google Scholar 

  33. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED . Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 1999; 27: 1569–1575.

    Article  CAS  PubMed  Google Scholar 

  34. Almeida-Porada G, Porada CD, Tran N, Zanjani ED . Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95: 3620–3627.

    CAS  PubMed  Google Scholar 

  35. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413–420.

    Article  CAS  PubMed  Google Scholar 

  36. in ‘t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881–889.

    Article  PubMed  Google Scholar 

  37. Plachter B, Sinzger C, Jahn G . Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 1996; 46: 195–261.

    Article  CAS  PubMed  Google Scholar 

  38. Yun Z, Lewensohn-Fuchs I, Ljungman P, Ringholm L, Jonsson J, Albert J . A real-time TaqMan PCR for routine quantitation of cytomegalovirus DNA in crude leukocyte lysates from stem cell transplant patients. J Virol Methods 2003; 110: 73–79.

    Article  CAS  PubMed  Google Scholar 

  39. Crapnell KB, Almeida-Porada G, Khaiboullina S, St Jeor SC, Zanjani ED . Human haematopoietic stem cells that mediate long-term in vivo engraftment are not susceptible to infection by human cytomegalovirus. Br J Haematol 2004; 124: 676–684.

    Article  PubMed  Google Scholar 

  40. Minton EJ, Tysoe C, Sinclair JH, Sissons JG . Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J Virol 1994; 68: 4017–4021.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI . The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12–20.

    Article  CAS  PubMed  Google Scholar 

  42. Parsons CH, Szomju B, Kedes DH . Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus. Blood 2004; 104: 2736–2738.

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Mondal D, La Russa VF, Agrawal KC . Suppression of clonogenic potential of human bone marrow mesenchymal stem cells by HIV type 1: putative role of HIV type 1 tat protein and inflammatory cytokines. AIDS Res Hum Retroviruses 2002; 18: 917–931.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society (4562-B03-XAC), the Children's Cancer Foundation (03/007), the Swedish Research Council (K2003-32XD-14716-01A), the Stockholm Cancer Society, the Swedish Society of Medicine and the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sundin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundin, M., Örvell, C., Rasmusson, I. et al. Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplant 37, 1051–1059 (2006). https://doi.org/10.1038/sj.bmt.1705368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705368

Keywords

This article is cited by

Search

Quick links