Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis

Summary:

Bone marrow (BM) stem cell reserves and function and stromal cell hematopoiesis supporting capacity were evaluated in 15 patients with multiple sclerosis (MS) and 61 normal controls using flow cytometry, clonogenic assays, long-term BM cultures (LTBMCs) and enzyme-linked immunosorbent assays. MS patients displayed normal CD34+ cell numbers but a low frequency of colony-forming cells (CFCs) in both BM mononuclear and purified CD34+ cell fractions, compared to controls. Patients had increased proportions of activated BM CD3+/HLA-DR+ and CD3+/CD38+ T cells that correlated inversely with CFC numbers. Patient BM CD3+ T cells inhibited colony formation by normal CD34+ cells and patient CFC numbers increased significantly following immunomagnetic removal of T cells from BMMCs, suggesting that activated T cells may be involved in the defective clonogenic potential of hematopoietic progenitors. Patient BM stromal cells displayed normal hematopoiesis supporting capacity indicated by the CFC number in the nonadherent cell fraction of LTBMCs recharged with normal CD34+ cells. Culture supernatants displayed normal stromal derived factor-1 and stem cell factor/kit ligand but increased flt-3 ligand levels. These findings provide support for the use of autologous stem cell transplantation in MS patients. The low clonogenic potential of BM hematopoietic progenitors probably reflects the presence of activated T cells rather than an intrinsic defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Marmont AM . Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83: 733–743.

    CAS  PubMed  Google Scholar 

  2. Ikehara S . Bone marrow transplantation for autoimmune diseases. Acta Haematol 1998; 99: 116–132.

    Article  CAS  PubMed  Google Scholar 

  3. Burt RK, Traynor A . Hematopoietic stem cell therapy of autoimmune diseases. Curr Opin Hematol 1998; 5: 472–477.

    Article  CAS  PubMed  Google Scholar 

  4. Burt RK, Marmont AM . Stem Cell Therapy for Autoimmune Disease. Landes Bioscience: Georgetown, TX, USA.

  5. Tyndall A, Koike T . High-dose immunoablative therapy with hematopoietic stem cell support in the treatment of severe autoimmune disease: current status and future direction. Intern Med 2002; 41: 608–612.

    Article  PubMed  Google Scholar 

  6. Guillaume T, Rubinstein DB, Symann M . Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 1998; 92: 1471–1490.

    CAS  PubMed  Google Scholar 

  7. Papadaki HA, Kritikos HD, Gemetzi C et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood 2002; 99: 1610–1619.

    Article  CAS  PubMed  Google Scholar 

  8. Papadaki HA, Kritikos HD, Valatas V et al. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-alpha antibody therapy. Blood 2002; 100: 474–482.

    Article  CAS  PubMed  Google Scholar 

  9. Papadaki HA, Boumpas DT, Gibson FM et al. Increased apoptosis of bone marrow CD34+ cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus. Br J Haematol 2001; 115: 167–174.

    Article  CAS  PubMed  Google Scholar 

  10. Otsuka T, Okamura S, Harada M et al. Multipotent hemopoietic progenitor cells in patients with systemic lupus erythematosus. J Rheumatol 1998; 15: 1085–1090.

    Google Scholar 

  11. Snowden JA, Nink V, Cooley M et al. Composition and function of peripheral blood stem and progenitor cell harvests from patients with severe active rheumatoid arthritis. Br J Haematol 1998; 103: 601–609.

    Article  CAS  PubMed  Google Scholar 

  12. Burt RK, Fassas A, Snowden J et al. Collection of hematopoietic stem cells from patients with autoimmune diseases. Bone Marrow Transplant 2001; 28: 1–12.

    Article  CAS  PubMed  Google Scholar 

  13. Shaughnessy PJ, Ririe DW, Ornstein DL et al. Graft failure in a patient with systemic lupus erythematosus (SLE) treated with high-dose immunosuppression and autologous stem cell rescue. Bone Marrow Transplant 2001; 27: 221–224.

    Article  CAS  PubMed  Google Scholar 

  14. Papadaki HA, Gibson FM, Rizzo S et al. Assessment of bone marrow stem cell reserve and function and stromal cell function in patients with autoimmune cytopenias. Blood 2000; 96: 3272–3275.

    CAS  PubMed  Google Scholar 

  15. Zhou D, Hemmer B . Specificity and degeneracy: T cell recognition in CNS autoimmunity. Mol Immunol 2004; 40: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  16. Hafler DA . Multiple sclerosis. J Clin Invest 2004; 113: 788–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Bekkum DW . Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol 2000; 20: 10–16.

    Article  CAS  PubMed  Google Scholar 

  18. Burt RK, Burns W, Hess A . Bone marrow transplantation for multiple sclerosis. Bone Marrow Transplant 1995; 16: 1–6.

    CAS  PubMed  Google Scholar 

  19. Fassas A, Anagnostopoulos A, Kazis A et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 1997; 20: 631–638.

    Article  CAS  PubMed  Google Scholar 

  20. Fassas A, Anagnostopoulos A, Kazis A et al. Autologous stem cell transplantation in progressive multiple sclerosis -an interim analysis of efficacy. J Clin Immunol 2000; 20: 24–30.

    Article  CAS  PubMed  Google Scholar 

  21. Fassas A, Kimiskidis VK . Stem cell transplantation for multiple sclerosis: what is the evidence? Blood Rev 2003; 17: 233–240.

    Article  PubMed  Google Scholar 

  22. McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson AJ, Montalban X, Barkhof F et al. Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 2000; 47: 831–835.

    Article  CAS  PubMed  Google Scholar 

  24. Papadaki HA, Stamatopoulos K, Damianaki A et al. Activated T-lymphocytes with myelosuppressive properties in patients with chronic idiopathic neutropenia. Br J Haematol 2005; 128: 863–876.

    Article  CAS  PubMed  Google Scholar 

  25. Coutinho LH, Gilleece MH, De Wynter EA et al. Clonal and long-term cultures using human bone marrow. In: Testa NG, Molineux G (eds). Haemopoiesis. A Practical Approach. Oxford University Press: Oxford, 1993, pp 75–106.

    Google Scholar 

  26. Maciejewski J, Selleri C, Anderson S, Young NS . Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995; 85: 3183–3190.

    CAS  PubMed  Google Scholar 

  27. Maciejewski JP, Selleri C, Sato T et al. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol 1995; 91: 245–252.

    Article  CAS  PubMed  Google Scholar 

  28. Zoumbos NC, Djeu JY, Young NS . Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J Immunol 1984; 133: 769–774.

    CAS  PubMed  Google Scholar 

  29. Lapidot T, Petit I . Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    Article  CAS  PubMed  Google Scholar 

  30. Kojima S, Matsuyama T, Kodera Y . Plasma levels and production of soluble stem cell factor by marrow stromal cells in patients with aplastic anaemia. Br J Haematol 1997; 99: 440–446.

    Article  CAS  PubMed  Google Scholar 

  31. Pfister O, Chklovskaia E, Jansen W et al. Chronic overexpression of membrane-bound flt3 ligand by T-lymphocytes in severe aplastic anaemia. Br J Haematol 2000; 109: 211–220.

    Article  CAS  PubMed  Google Scholar 

  32. Fassas A, Kimiskidis VK . Autologous hemopoietic stem cell transplantation in the treatment of multiple sclerosis: rationale and clinical experience. J Neurol Sci 2004; 223: 53–58.

    Article  CAS  PubMed  Google Scholar 

  33. Fassas A, Nash RA . Multiple Sclerosis. Bailliere's Clin Haematol 2004; 17: 247–262.

    Article  CAS  Google Scholar 

  34. Burt RK, Cohen BA, Russell E et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood 2003; 102: 2373–2378.

    Article  CAS  PubMed  Google Scholar 

  35. Papadaki HA . Autoreactive T-lymphocytes are implicated in the pathogenesis of bone marrow failure in patients with systemic lupus erythematosus. Leuk Lymphoma 2003; 44: 1301–1307.

    Article  CAS  PubMed  Google Scholar 

  36. Khoury SJ, Guttmann CR, Orav EJ et al. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch Neurol 2000; 57: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  37. Bilinska M, Frydecka I, Podemski R et al. Expression of Fas antigen on T cell subpopulations in peripheral blood of patients with relapsing-remitting multiple sclerosis. Med Sci Monitor 2001; 7: 251–255.

    CAS  Google Scholar 

  38. Jensen J, Krakauer M, Sellebjerg F . Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis. Eur J Neurol 2001; 8: 321–328.

    Article  CAS  PubMed  Google Scholar 

  39. Carreras E, Saiz A, Marin P et al. CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients. Haematologica 2003; 88: 306–314.

    PubMed  Google Scholar 

  40. Rinehart J, Keville L, Clayton S, Figueroa JA . Corticosteroids alter hematopoiesis in vitro by enhancing human monocyte secretion of granulocyte colony-stimulating factor. Exp Hematol 1997; 25: 405–412.

    CAS  PubMed  Google Scholar 

  41. Clausen J, Stockschlader M, Fehse N et al. Blood-derived macrophage layers in the presence of hydrocortisone support myeloid progenitors in long-term cultures of CD34+ cord blood and bone marrow cells. Ann Hematol 2000; 79: 59–65.

    Article  CAS  PubMed  Google Scholar 

  42. Heinrich MC, Dooley DC, Freed AC et al. Constitutive expression of Steel factor gene by human stromal cells. Blood 1993; 82: 771–783.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Helen Koutala for her valuable help in performing the flow cytometric acquisition of BM and PB samples in MS patients and healthy controls. This work was supported by a grant (STEMNET) of the Hellenic General Secretariat of Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H A Papadaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadaki, H., Tsagournisakis, M., Mastorodemos, V. et al. Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis. Bone Marrow Transplant 36, 1053–1063 (2005). https://doi.org/10.1038/sj.bmt.1705179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705179

Keywords

This article is cited by

Search

Quick links