Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Biological purging of breast cancer cell lines using a replication-competent oncolytic virus in human stem cell autografts

Summary:

Autologous hematological stem cell transplantation (ASCT) is used for the treatment of many hematological and several solid cancers. ASCT, however, has proven disappointing as a therapeutic strategy for breast cancer. Our group and others have previously shown that breast cancer micrometastases found in patients' apheresis products (APs) predict shorter progression-free and overall survival. The implications of this finding are twofold: (i) contaminating tumor cells (CTCs) in AP reflect a higher systemic disease burden and/or (ii) reinfused CTCs contribute to relapse/progressive disease. To date, purging strategies have been disappointing. We have previously demonstrated the oncolytic properties of reovirus in in vitro, in vivo and ex vivo systems. In the present study, we tested the hypothesis that reovirus purges CTCs in a breast cancer cell line purging model. Reovirus-infected human breast cancer cell lines (HTB 133, HTB 132, SKBR3 and MCF7) exhibited cell death within days. Admixtures of AP with cells from breast tumor cell lines, which were then exposed to reovirus, showed complete purging of CTCs (assessed via flow cytometry/tumor cell outgrowth analysis) without deleterious effect on CD34+ cells. Our results provide preclinical support for the ex vivo use of reovirus as a purging modality for breast cancer during ASCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sandelin K, Apffelstaedt JP, Abdullah H et al. Breast surgery International – breast cancer in developing countries. Scand J Surg 2002; 91: 222–226.

    Article  CAS  PubMed  Google Scholar 

  2. Ries LA, Wingo PA, Miller DS et al. The annual report to the nation on the status of cancer, 1973–1997, with a special section on colorectal cancer. Cancer 2000; 88: 2398–2424.

    Article  CAS  PubMed  Google Scholar 

  3. Broeders MJ, Verbeek AL . Breast cancer epidemiology and risk factors. Q J Nucl Med 1997; 41: 179–188.

    CAS  PubMed  Google Scholar 

  4. Edwards BK, Howe HL, Ries LA et al. Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 2002; 94: 2766–2792.

    Article  PubMed  Google Scholar 

  5. Nieto Y . The verdict is not in yet. Analysis of the randomized trial of high-dose chemotherapy for breast cancer. Haematologica 2003; 88: 201–211.

    CAS  PubMed  Google Scholar 

  6. Roche H, Viens P, Biron P et al. High dose chemotherapy for breast cancer: The French PEGASES experience. Cancer Control 2003; 10: 42–47.

    Article  PubMed  Google Scholar 

  7. Antman KH . Randomized trials of high dose chemotherapy for breast cancer. Biochem Biophys Acta 2001; 1471 (3): M89–98.

    CAS  PubMed  Google Scholar 

  8. Syme R, Steward D, Rodriguez-Galvez M et al. Micrometastases in apheresis products predict shorter progression-free and overall survival in patients with breast cancer undergoing high-dose chemotherapy (HDCT) and autologous blood stem cell transplantation (ABSCT). Bone Marrow Transplant 2003; 32: 307–311.

    Article  CAS  PubMed  Google Scholar 

  9. Heslop HE, Rill DR, Horwitz EM et al. Gene marking to assess tumor contamination in stem cell grafts for acute myelogenous leukemia. In: Dicke KA, Keating A (eds). Autologous Blood and Marrow Transplantation: Proceedings of the Ninth International Symposium. Arlington, TX, 1999, pp 513–520.

    Google Scholar 

  10. Deisseroth AB, Zu Z, Claxton D et al. Genetic markers shows that Ph+ cells present in autologous transplants of chonic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 1994; 83: 3068–3076.

    CAS  PubMed  Google Scholar 

  11. Rill DR, Santana VM, Roberts WM et al. Direct demonstration that autologous bone marrow transplantation for solid tumours can return a multiplicity of tumorigenic cells. Blood 1994; 84: 380–383.

    CAS  PubMed  Google Scholar 

  12. Lemoli RM, Gasparetto C, Scheinberg DA et al. Autologous bone marrow transplantation in acute myelogenous leukemia: in vitro treatment with myeloid-specific monoclonal antibodies and drugs in combination. Blood 1991; 77: 1829–1836.

    CAS  PubMed  Google Scholar 

  13. Leung W, Cheng AR, Klann RC et al. Frequent detection of tumor cells in hematopoietic grafts in neuroblastoma and Ewing's sarcoma. Bone Marrow Transplant 1998; 22: 971–979.

    Article  CAS  PubMed  Google Scholar 

  14. Tsujino I, Anderson GS, Sieber F . Postirradiation hyperthermia selectively potentiates the merocyanine 540-sensitized photoinacitvation of small cell lung cancer cells. Photochem Photobiol 2001; 73: 191–198.

    Article  CAS  PubMed  Google Scholar 

  15. Brasseur N, Menard I, Forget A et al. Eradication of multiple myeloma and breast cancer cells by TH9402-mediated photodynamic therapy: implication for clinical ex vivo purging of autologous stem cell transplants. Photochem Photobiol 2000; 72: 780–787.

    Article  CAS  PubMed  Google Scholar 

  16. Meck MM, Wierdl M, Wagner LM et al. A virus-directed enzyme prodrug therapy approach to purging neuroblastoma cells from hematopoietic cells using adenovirus encoding rabbit carboxylesterase and CPT-11. Cancer Res 2001; 61: 5083–5089.

    CAS  PubMed  Google Scholar 

  17. Keir M, Fiddes R, Biggs JC, Kearney PP . Sensitivity of c-erbB positive cells to a ligand toxin and its utility in purging breast cancer cells from peripheral blood stem cell (PBSC) collections. Stem Cells 2000; 18: 422–427.

    Article  CAS  PubMed  Google Scholar 

  18. La Casse EC, Bray MR, Patterson B et al. Shiga like Toxin-1 receptor on human breast cancer, lymphoma, and myeloma and absence from CD34+ hematopoietic stem cells: implications for ex vivo tumor purging and autologous stem cell transplantation. Blood 1999; 94: 2901–2910.

    CAS  Google Scholar 

  19. Wu A, Mazumder A, Martuza RL et al. Biological purging of breast cancer cells using an attenuated replication-competent herpes simplex virus in human hematopoietic stem cell transplantation. Cancer Res 2001; 61: 3009–3015.

    CAS  PubMed  Google Scholar 

  20. Tyler KL, Fields BN . Reoviruses. In: Fields BN, Knipe DM, Howley PM (eds). Fields Virology. Lippincott-Raven: Philadelphia, 1996, pp 1597–1623.

    Google Scholar 

  21. Strong JE, Coffey MC, Tang D et al. The molecular basis of viral oncolysis: usurpation of the Ras signalling pathway by reovirus. EMBO J 1998; 17: 3351–3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coffey MC, Strong JM, Forsyth PA, Lee PWK . Reovirus therapy of tumors with activated ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  23. Norman KL, Hirasawa K, Yang A et al. Reovirus oncolysis: the Ras/RalGEF/p38 pathways dictates cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 2004; 101: 11099–11104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilcox ME, Yang W, Senger D et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001; 93: 903–912.

    Article  CAS  PubMed  Google Scholar 

  25. Hirasawa K, Nishikawa SG, Norman KL et al. Oncolytic reovirus against ovarian and colon cancer. Cancer Res 2002; 62: 1696–1701.

    CAS  PubMed  Google Scholar 

  26. Norman KL, Coffey MC, Hirasawa K et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther 2002; 13: 641–652.

    Article  CAS  PubMed  Google Scholar 

  27. Nodwell M, Thirukkumaran C, Luider J et al. Reovirus as a novel prostate cancer therapeutic (abstract). Proc AACR 2000; 41: 122.

    Google Scholar 

  28. Alain T, Hirasawa K, Pon KJ et al. Reovirus therapy of lymphoid malignancies. Blood 2002; 100: 4146–4153.

    Article  CAS  PubMed  Google Scholar 

  29. Thirukkumaran CM, Luider JM, Stewart DA et al. Reovirus oncolysis as a novel purging strategy for autologous stem cell transplants. Blood 2003; 102: 377–387.

    Article  CAS  PubMed  Google Scholar 

  30. Yang WQ, Senger DL, Lun XQ et al. Reovirus as an experimental therapeutic for brain and leptomeningeal metastases from breast cancer. Gene Therapy 2004, 1–11.

  31. Smith RE, Zweerink H J, Jocklik WK . Polypeptide components of virions, top component and scores of reovirus type 3. Virology 1969; 39: 791–810.

    Article  CAS  PubMed  Google Scholar 

  32. Lee PW, Hayes EC, Joklik WK . Protein sigma 1 is the reovirus cell attachment protein. Virology 1981; 108: 138–163.

    Google Scholar 

  33. Keeney M, Chin-Yee I, Weir K et al. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 1998; 34: 61–70.

    Article  CAS  PubMed  Google Scholar 

  34. Sutherland DR, Anderson L, Keeney M et al. The ISHAGE guidelines for CD 34+ cell determination by flow cytometry. J Hematother 1996; 5: 213–226.

    Article  CAS  PubMed  Google Scholar 

  35. Farquhar C, Basser R, Hetrick S et al. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with metastatic breast cancer. Cochrane Database Syst Rev 2003, CD00314 (available at: http://www.cochrane.org/cocharane/revabstr/AB003142.htm).

  36. Farquhar C, Basser R, Marjoribanks J, Lethaby A . High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev 2003, CD003139 (available at: http://www.cochrane.org/cocharane/revabstr/AB003139.htm).

  37. Datta YH, Adams PT, Drobyski WR et al. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 1994; 21: 475–482.

    Article  Google Scholar 

  38. Peters WP, Shpall EJ, Jones RB et al. High dose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 1998; 6: 1368–1376.

    Article  Google Scholar 

  39. Fields KK, Elfenbein GJ, Trudeau WL et al. Clinical significance of bone marrow matastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 1996; 14: 1868–1876.

    Article  CAS  PubMed  Google Scholar 

  40. Sharp JC, Kessinger A, Mann S . Detection and clinical significance of minimal tumour cell contamination of peripheral blood stem cell harvests. Int J Cell Cloning 1992; 10 (Suppl): 92–94.

    Article  Google Scholar 

  41. Franklin WA, Glaspy J, Plaumer SM et al. Incidence of tumor-cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone. Blood 1999; 94: 340–347.

    CAS  PubMed  Google Scholar 

  42. Nieto Y, Franklin WA, Jones RB et al. Prognostic significance of occult tumor cells in the aphersesis products of patients with advanced breast cancer receiving high-dose chemotherapy and autologous hematopoietic progenitor cell support. Biol Blood Marrow Transplant 2004; 10: 415–425.

    Article  PubMed  Google Scholar 

  43. Gribben JG, Neuberg D, Freedman AS et al. Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 1993; 81: 3449–3457.

    CAS  PubMed  Google Scholar 

  44. Kasimir-Bauer S, Mayer S, Bojko P et al. Survival of tumour cells in stem cell transplantations and bone marrow of patients with high-risk or metastatic breast cancer after receiving dose intensive or high-dose chemotherapy. Clin Cancer Res 2001; 7: 1582–1590.

    CAS  PubMed  Google Scholar 

  45. Eckert LB, Repasky GA, Ulku A et al. Involvement of Ras activation in human breast cancer cell signalling, invasion and anoikis. Cancer Res 2004; 64: 4585–4592.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia I, Dietrich PY, Aapro M et al. Genetic alterations of c-myc, c-erbB-2, and c-Ha-ras protooncogenes and clinical associations in human breast carcinomas. Cancer Res 1989; 49: 6675–6679.

    CAS  PubMed  Google Scholar 

  47. Rochlitz CF, Scott GK, Dodson JM et al. Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 1989; 49: 357–360.

    CAS  PubMed  Google Scholar 

  48. Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  49. Ross JS, Flether JA . The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 1998; 3: 237–252.

    CAS  PubMed  Google Scholar 

  50. Koenders PG, Beex LV, Geurts-Moespot A et al. Epidermal growth factor receptor-negative tumors are predominantly confined to the subgroup of estradiol receptor-positive human primary breast cancers. Cancer Res 1991; 51: 4544–4548.

    CAS  PubMed  Google Scholar 

  51. Shackney SE, Pollice AA, Smith CA et al. Intracellular coexpresssion of epidermal growth factor receptor, Her-2neu, and p21ras in human breast cancers: evidence for the existence of distinctive patterns of genetic evolution that are common to tumors from different patients. Clin Cancer Res 1998; 4: 913–928.

    CAS  PubMed  Google Scholar 

  52. Jacobs C, Rubsamen H . Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas. Cancer Res 1983; 43: 1696–1702.

    CAS  PubMed  Google Scholar 

  53. Verbeek BS, Vroom TM, Adriaansen-Slot SS et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol 1996; 180: 383–388.

    Article  CAS  PubMed  Google Scholar 

  54. Cooper BW, Moss TJ, Ross AA et al. Occult tumor contamination of hematopoietic stem-cell products does not affect clinical outcome of autologous transplantation in patient with metastatic breast cancer. J Clin Oncol 1998; 16: 3509–3517.

    Article  CAS  PubMed  Google Scholar 

  55. George A, Kost SI, Witzleben CL et al. Reovirus induced liver disease in severe combine immunodeficient (SCID) mice. A model for the study of viral infection, pathogenesis, and clearance. J Exp Med 1990; 171: 929–934.

    Article  CAS  PubMed  Google Scholar 

  56. Hirasawa K, Nishikawa S, Norman L et al. Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res. 2003; 63: 348–353.

    CAS  PubMed  Google Scholar 

  57. Morris DG, Forsyth PA, Patterson AH et al. A phase I clinical trail evaluating intralesional reolysin (reovirus) in histologically confirmed malignancies (abstract). ASCO 2002; 21: 24a.

    Google Scholar 

  58. Lillo R, Ramirez M, Alvarez A et al. Efficient and non-toxic adenoviral purging method for autologous transplantation in breast cancer patients. Cancer Res 2002; 62: 5013–5018.

    CAS  PubMed  Google Scholar 

  59. Hirai M, LaFace D, Robinson S et al. Ex vivo purging by adenoviral p53 gene therapy does not affect NOD-SCID repopulating activity of human CD 34+ cells. Cancer Gene Ther 2001; 8: 936–947.

    Article  CAS  PubMed  Google Scholar 

  60. Wagner LM, Guichard SM, Burger RA et al. Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: preclinical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Res 2002; 62: 5001–5007.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to DGM from the Alberta Cancer Board and Oncolytics Biotech Inc. We acknowledge support from the staff at the Southern Alberta Bone Marrow Transplant Unit and the Apheresis Unit/Blood Bank of the Foothills Medical Centre for their help during this study. Thanks are also extended to Dr Karen Kopciuk and Mr Thomas Speidel for assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirukkumaran, C., Luider, J., Stewart, D. et al. Biological purging of breast cancer cell lines using a replication-competent oncolytic virus in human stem cell autografts. Bone Marrow Transplant 35, 1055–1064 (2005). https://doi.org/10.1038/sj.bmt.1704931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704931

Keywords

This article is cited by

Search

Quick links