Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cure of myeloma: hype or reality?

Summary:

High-dose treatment (HDT) with autologous stem cell transplant(s) (ASCT) improved survival, when compared to standard treatment, in multiple myeloma patients. Although the superiority of HDT is clearly recognized by the medical community, what is less appreciated is the disproportionate benefit enjoyed (as a result of this approach) by various patient subgroups. As the clinical heterogeneity of myeloma can be currently traced to its underlying genetic features, prognostically different patient groups can be identified largely based on the presence of adverse cytogenetic abnormalities and high serum levels of lactate dehydrogenase at baseline (high-risk features). While HDT applied to high-risk patients leads to modest survival gains, the same treatment, as the backbone of a comprehensive approach, can be curative in a minority of low-risk patients. A third group of low-risk patients will enjoy rather prolonged (10-year) survival, interrupted, however, by responsive relapses. In a manner analogous to follicular lymphoma, this latter group may transform to a more aggressive disease, characterized by the new acquisition of adverse cytogenetic abnormalities. Improving the complete response rate in these patients, by integrating newer therapeutic agents, may increase their cure rate. Currently non-myeloablative, allogeneic transplants (and possibly proteasome inhibitors) are the most promising approaches for high-risk patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Samson D . Principles of chemotherapy and radiotherapy. In: Gahrton G, Durie BGM (eds.). Multiple Myeloma. Arnold: London, 1996; pp 108–129.

    Google Scholar 

  2. Myeloma Trialists' Collaborative Group. Combination chemotherapy vs melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J Clin Oncol 1998; 16: 3832–3842.

  3. Barlogie B, Smith L, Alexanian R . Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 1984; 310: 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  4. Alexanian R, Barlogie B, Tucker S . VAD-based regimens as primary treatment for multiple myeloma. Am J Hematol 1990; 33: 86–89.

    Article  CAS  PubMed  Google Scholar 

  5. McElwain TJ, Powles RL . High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983; 2: 822–824.

    Article  CAS  PubMed  Google Scholar 

  6. Vesole DH, Tricot G, Jagannath S et al. Autotransplants in multiple myeloma: what have we learned? Blood 1996; 88: 838–847.

    CAS  PubMed  Google Scholar 

  7. Raje N, Powles R, Kulkarni S et al. A comparison of vincristine and doxorubicin infusional chemotherapy with methylprednisolone (VAMP) with the addition of weekly cyclophosphamide (C-VAMP) as induction treatment followed by autografting in previously untreated myeloma. Br J Haematol 1997; 97: 153–160.

    Article  CAS  PubMed  Google Scholar 

  8. Singhal S, Mehta J, Desikan R et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  9. Richardson P, Barlogie B, Berenson J et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  10. Berenson JR, Lichtenstein A, Porter L et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996; 334: 488–493.

    Article  CAS  PubMed  Google Scholar 

  11. Berenson JR, Lichtenstein A, Porter L et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998; 16: 593–602.

    Article  CAS  PubMed  Google Scholar 

  12. Osterborg A, Brandberg Y, Molostova V et al. Randomized, double-blind, placebo-controlled trial of recombinant human erythropoietin, epoetin Beta, in hematologic malignancies. J Clin Oncol 2002; 20: 2486–2494.

    Article  CAS  PubMed  Google Scholar 

  13. Dudeney S, Lieberman IH, Reinhardt MK et al. Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma. J Clin Oncol 2002; 20: 2382–2387.

    Article  CAS  PubMed  Google Scholar 

  14. Cotten A, Dewatre F, Cortet B et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996; 200: 525–530.

    Article  CAS  PubMed  Google Scholar 

  15. Barlogie B, Jagannath S, Vesole D et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 1997; 89: 789–793.

    CAS  PubMed  Google Scholar 

  16. Lenhoff S, Hjorth M, Holmberg E et al. Impact on survival of high does therapy with autologous stem cell supporting patients younger than 60 years with newly diagnosed multiple myeloma: a population based study. Blood 2000; 95: 7–11.

    CAS  PubMed  Google Scholar 

  17. Attal M, Harousseau JL, Stoppa AM et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  18. Child JA, Morgan GI, Davies FE et al. High-dose chemotherapy with heatopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  19. Attal M, Harousseau JL, Facon T et al. Single vs double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003; 349: 2495–2502.

    Article  CAS  PubMed  Google Scholar 

  20. Miyamoto T, Nagafuji K, Akashi K et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t (8;21) acute myelogenous leukemia. Blood 1996; 87: 4789–4796.

    CAS  PubMed  Google Scholar 

  21. Barlogie B, JagannathS, Desikan KR et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999; 93: 55–65.

    CAS  PubMed  Google Scholar 

  22. Smadja N-V, Bastard C, Brigaudeau C et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001; 98: 2229–2238.

    Article  CAS  PubMed  Google Scholar 

  23. Fassas AB-T, Spencer T, Sawyer J et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol 2002; 118: 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson J, Barlogie B, Shaughnessy J et al. MDS-type abnormalities with myeloma signature karyotype (MM-MDS). Br J Haematol 2003; 122: 430–440.

    Article  PubMed  Google Scholar 

  25. Barlogie B, Smallwood L, Smith T, Alexanian R . High serum levels of lactic dehydrogenase identify a high-grade lymphoma-like myeloma. Ann Intern Med 1989; 110: 521–525.

    Article  CAS  PubMed  Google Scholar 

  26. Shaughnessy J, Jacobson J, Sawyer J et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with total therapy I: interpretation in the context of global gene expression. Blood 2003; 101: 3849–3856.

    Article  CAS  PubMed  Google Scholar 

  27. Lahuerta JJ, Grande C, Martinez-Lopez J et al. Tandem transplants with different high-dose regimens improve the complete remission rates in multiple myeloma. Br J Haematol 2003; 120: 296–303.

    Article  CAS  PubMed  Google Scholar 

  28. Fermand JP, Marolleau JP, Alberti C . Single vs tandem high-dose therapy (HDT) supported with autologous blood stem cell (ABSC) transplantation using unselected or CD-34 enriched ABSC: preliminary results of a two by two design randomized trial in 230 young patients with multiple myeloma. Blood 2001; 98: 815a (abstract 3387).

    Google Scholar 

  29. Cavo M, Tosi P, Zagmagni E et al. The Bologna 96 clinical trial of single vs double PBSC transplantation for previously untreated MM: results of an interim analysis. Blood 2002; 100: 17a (abstract 669).

    Article  Google Scholar 

  30. Segeren CM, Sonneveld P, van der Holt B et al. Overall and event free survival are not improved by the use of myeloablative therapy following intensified chemotherapy in previously untreated patients with multiple myeloma: a prospective randomized phase 3 study. Blood 2003; 101: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  31. Moreau P, Facon T, Attal M et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 2002; 99: 731–735.

    Article  CAS  PubMed  Google Scholar 

  32. Desikan KR, Tricot G, Dhodapkar M et al. Melphalan plus total body irradiation (MEL-TBI) or cyclophosphamide (MEL-CY) as a conditioning regimen with second autotransplant in responding patients with myeloma is inferior compared to historical controls receiving tandem transplants with melphalan alone. Bone Marrow Transplant 2000; 25: 483–487.

    Article  CAS  PubMed  Google Scholar 

  33. Vacca A, Ribatti D, Roncali L et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson K . Moving disease biology from the laboratory to the clinic. Semin Oncol 2002; 29 (Suppl. 17): 17–20.

    Article  PubMed  Google Scholar 

  35. Barlogie B, Zangari M, Spencer T et al. Thalidomide in the management of multiple myeloma. Semin Hematol 2001; 38: 250–259.

    Article  CAS  PubMed  Google Scholar 

  36. Mileshkin L, Biagi JJ, Mitchell P et al. Multicenter phase 2 trial of thalidomide in relapsed/refractory multiple myeloma: adverse prognostic impact of advanced age. Blood 2003; 102: 69–77.

    Article  CAS  PubMed  Google Scholar 

  37. Neben K, Moehler T, Benner A et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002; 8: 3377–3382.

    CAS  PubMed  Google Scholar 

  38. Yakoub-Agha I, Attal M, Dumontet C et al. Thalidomide in patients with advanced multiple myeloma: a study of 83 patients – report of the Intergroupe Francophone du Myelome (IFM). Hematol J 2002; 3: 185–192.

    Article  CAS  PubMed  Google Scholar 

  39. Richardson PGG, Barlogie B, Berenson J et al. Prognostic factors associated with response in patients with relapsed and refractory multiple myeloma (MM) treated with bortezomib. ASCO Meeting Proceedings 2003; 102 (Abstract 581).

  40. Zangari M, Barlogie B, Jacobson J et al. VTD regimen comprising velcade (V)+Thalidomide (T) and added DEX (D) for non-responders to V+effects a 57% PR rate among 56 patients with myeloma (M) relapsing after autologous transplant. Blood 2003; 102: 236a (abstract 830).

    Google Scholar 

  41. Richardson PG, Schlossman R, Weller E et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100: 3063–3067.

    Article  CAS  PubMed  Google Scholar 

  42. Zangari M, Barlogie B, Jacobson J et al. Revimid 25 mg (REV 25) × 20 vs 50 mg (REV 50) × 10 q 28 days with bridging of 5 mg × 10 vs 10 mg × 5 as post-transplant salvage therapy for multiple myeloma (MM). Blood 2003; 102: 450a (abstract 1642).

    Google Scholar 

  43. Fassas AB, Barlogie B, Ward S et al. Survival after relapse following tandem autotransplants in multiple myeloma patients: the University of Arkansas total therapy I experience. Br J Haematol 2003; 123: 484–489.

    Article  PubMed  Google Scholar 

  44. Kaminski M, Zelenetz A, Press O et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J Clin Oncol 2001; 19: 3908–3911.

    Article  Google Scholar 

  45. Tricot G, Vesole DH, Jagannath S et al. Graft-versus-myeloma effect: proof of principle. Blood 1996; 87: 1196–1198.

    CAS  PubMed  Google Scholar 

  46. Bensinger WI, Buckner CD, Anasetti C et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 1996; 88: 2787–2793.

    CAS  PubMed  Google Scholar 

  47. Bjorkstrand BB, Ljungman P, Svensson H et al. Allogeneic bone marrow transplantation vs autologous stem cell transplantation in multiple myeloma: a retrospective case-matched study from the European Group for Blood and Marrow Transplantation. Blood 1996; 88: 4711–4718.

    CAS  PubMed  Google Scholar 

  48. Maloney DG, Molina AJ, Sahebi F et al. Allografting with non-myeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003; 102: 3447–3545.

    Article  CAS  PubMed  Google Scholar 

  49. Kröger N, Schwerdtfeger R, Kiehl M et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002; 100: 755–760.

    Article  PubMed  Google Scholar 

  50. Moreau P, Garban F, Falcon T et al. Preliminary results of the IFM9903 and IFM9904 protocols comparing autologous followed by miniallogeneic transplantation and double autologous transplant in high-risk de novo multiple myeloma. Blood 2003; 102: 43a (#138).

    Article  Google Scholar 

  51. Badros A, Barlogie B, Morris C et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001; 97: 2547–2549.

    Article  Google Scholar 

  52. Lee CK, Badros A, Barlogie B et al. Prognostic factors in allogeneic transplantation for patients with high-risk multiple myeloma after reduced intensity conditioning. Exp Hematol 2003; 31: 73–80.

    Article  PubMed  Google Scholar 

  53. Zhan F, Hardin J, Kordsmeier B et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CA55819 from the National Cancer Institute, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fassas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassas, A., Shaughnessy, J. & Barlogie, B. Cure of myeloma: hype or reality?. Bone Marrow Transplant 35, 215–224 (2005). https://doi.org/10.1038/sj.bmt.1704757

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704757

Keywords

This article is cited by

Search

Quick links