Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Telomere Length

Telomere length predicts neutrophil recovery in the absence of G-CSF after autologous peripheral blood stem cell transplantation

Summary:

Haemopoietic regeneration after autologous peripheral blood progenitor cell (PBPC) transplantation can be delayed in some patients despite adequate infusion of CD34+ cells. This suggests variability in the proliferation potential of the implanted cells, a capacity that may be predicted by their telomere length. To test this theory, telomere length was measured on stored apheresis samples from 36 patients aged 46.6±11.1 years, who had undergone successful autologous PBPC transplantation with a median of 5.6 × 106/kg (1.3 × 106–36.1 × 106/kg) CD34+ cells. The mean PBPC telomere length for the cohort was 9.4±2.3 kbp. For patients who did not receive G-CSF post transplantation (n=7), days to absolute neutrophil recovery (ANC), 0.1, 0.5 and 1.0 × 109 cells/l, were significantly inversely correlated with telomere length of the infused PBPC (r=−0.88, −0.81, −0.77, respectively; P<0.05,). However, no correlation was found for patients who received G-CSF from day 1 post transplantation (n=20). These data suggest that for transplantation with sufficient CD34+ cells, neutrophil recovery is less efficient in patients receiving infusions of cells with short telomeres, but this deficiency can be corrected with adequate post transplantation administration of G-CSF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Porrata LF, Litzow MR, Tefferi A et al. Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 2002; 16: 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  2. Porrata LF, Gertz MA, Inwards DJ et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001; 98: 579–585.

    Article  CAS  PubMed  Google Scholar 

  3. Osma MM, Ortuno F, Lozano ML et al. Administration of post-autologous PBSCT rhG-CSF is associated with long-term low concentrations of bone marrow hematopoietic progenitor cells. Bone Marrow Transplant 2001; 27: 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Simon JA, Martin A, Caballero D et al. Clinical significance of CD34+ cell dose in long-term engraftment following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1999; 24: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  5. Morse EE, Tuck D, Ascensao J et al. Factors affecting recovery after peripheral blood stem cell transplantation. Ann Clin Lab Sci 1993; 23: 89–96.

    CAS  PubMed  Google Scholar 

  6. Bensinger W, Appelbaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995; 13: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–573.

    Article  CAS  PubMed  Google Scholar 

  8. Vaziri H, Schachter F, Uchida I et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993; 52: 661–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Allsopp RC, Vaziri H, Patterson C et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harley CB . Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991; 256: 271–282.

    Article  CAS  PubMed  Google Scholar 

  11. Akiyama M, Asai O, Kuraishi Y et al. Shortening of telomeres in recipients of both autologous and allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2000; 25: 441–447.

    Article  CAS  PubMed  Google Scholar 

  12. Lee J, Kook H, Chung I et al. Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 1999; 24: 411–415.

    Article  CAS  PubMed  Google Scholar 

  13. Wynn RF, Cross MA, Hatton C et al. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants [see comments]. Lancet 1998; 351: 178–181.

    Article  CAS  PubMed  Google Scholar 

  14. Engelhardt M, Mackenzie K, Drullinsky P et al. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  15. Sakoff JA, De Waal E, Garg M et al. Telomere length in haemopoietic stem cells can be determined from that of mononuclear blood cells or whole blood. Leukemia Lymphoma 2002; 43: 2017–2020.

    Article  PubMed  Google Scholar 

  16. Siena S, Schiavo R, Pedrazzoli P et al. Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  17. Faucher C, Le Corroller AG, Chabannon C et al. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery. J Hematother 1996; 5: 663–670.

    Article  CAS  PubMed  Google Scholar 

  18. van der Wall E, Richel DJ, Holtkamp MJ et al. Bone marrow reconstitution after high-dose chemotherapy and autologous peripheral blood progenitor cell transplantation: effect of graft size [see comments]. Ann Oncol 1994; 5: 795–802.

    Article  CAS  PubMed  Google Scholar 

  19. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  20. Harrison DE, Astle CM . Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J Exp Med 1982; 156: 1767–1779.

    Article  CAS  PubMed  Google Scholar 

  21. Allsopp RC, Cheshier S, Weissman IL . Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 2001; 193: 917–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Notaro R, Cimmino A, Tabarini D et al. In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 1997; 94: 13782–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Awaya N, Baerlocher GM, Manley TJ et al. Telomere shortening in hematopoietic stem cell transplantation: a potential mechanism for late graft failure? Biol Blood Marrow Transplant 2002; 8: 597–600.

    Article  PubMed  Google Scholar 

  24. Engelhardt M, Kumar R, Albanell J et al. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193.

    CAS  PubMed  Google Scholar 

  25. Szyper-Kravitz M, Uziel O, Shapiro H et al. Granulocyte colony-stimulating factor administration upregulates telomerase activity in CD34+ haematopoietic cells and may prevent telomere attrition after chemotherapy. Br J Haematol 2003; 120: 329–336.

    Article  CAS  PubMed  Google Scholar 

  26. Tehranchi R, Fadeel B, Forsblom AM et al. Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 2003; 101: 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  27. Karlseder J, Broccoli D, Dai Y et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  28. Benetos A, Okuda K, Lajemi M et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37: 381–385.

    Article  CAS  PubMed  Google Scholar 

  29. Hastie ND, Dempster M, Dunlop MG et al. Telomere reduction in human colorectal carcinoma and with ageing [see comments]. Nature 1990; 346: 866–868.

    Article  CAS  PubMed  Google Scholar 

  30. Karlseder J, Smogorzewska A, de Lange T . Senescence induced by altered telomere state, not telomere loss. Science 2002; 295: 2446–2449.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded through a project grant from the Hunter Medical Research Institute, NSW, Australia, and the Hunter Haematology Unit Trust Fund, Newcastle Mater Misericordiae Hospital, NSW, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Lincz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lincz, L., Scorgie, F., Sakoff, J. et al. Telomere length predicts neutrophil recovery in the absence of G-CSF after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 34, 439–445 (2004). https://doi.org/10.1038/sj.bmt.1704607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704607

Keywords

This article is cited by

Search

Quick links