Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress

Summary:

Iron overload is a common acute and long-term event associated with autologous and allogeneic hematopoietic stem cell transplantation (HSCT). In a state of iron excess, free iron becomes available to catalyze the conversion of reactive oxygen species (ROS) intermediates such as superoxide anion (O2•−) and hydrogen peroxide (H2O2) to highly toxic free radicals such as hydroxyl radical (OH). ROS may help to promote chronic liver disease, sinusoidal obstruction syndrome, idiopathic pneumonia syndrome and bacterial, fungal and other opportunistic infections. Phlebotomy has been effectively and safely used to deplete excess iron stores post-HSCT in thalassemic and other iron-overloaded patients. Intracellular iron levels may also be decreased through pharmacologic chelating agents, while antioxidants such as N-acetylcysteine, glutamine (glutathione precursor) and captopril have been shown to replenish glutathione redox potential and scavenge free radicals. A better understanding of the mechanisms involved in the iron-generated pro-oxidant state associated with HSCT will likely lead to reduced toxicity and improved patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gordon LI, Brown SG, Tallman MS et al. Sequential changes in serum iron and ferritin in patients undergoing high-dose chemotherapy and radiation with autologous bone marrow transplantation: possible implications for treatment related toxicity. Free Radic Biol Med 1995; 18: 383–389.

    CAS  PubMed  Google Scholar 

  2. Durken M, Nielsen P, Knobel S et al. Nontransferrin-bound iron in serum of patients receiving bone marrow transplants. Free Radic Biol Med 1997; 22: 1159–1163.

    CAS  PubMed  Google Scholar 

  3. Sahlstedt L, Ebeling F, von Bonsdorff L et al. Non-transferrin-bound iron during allogeneic stem cell transplantation. Br J Haematol 2001; 113: 836–838.

    CAS  PubMed  Google Scholar 

  4. McKay PJ, Murphy JA, Cameron S et al. Iron overload and liver dysfunction after allogeneic or autologous bone marrow transplantation. Bone Marrow Transplant 1996; 17: 63–66.

    CAS  PubMed  Google Scholar 

  5. Strasser SI, Kowdley KV, Sale GE, McDonald GB . Iron overload in bone marrow transplant recipients. Bone Marrow Transplant 1998; 22: 167–173.

    CAS  PubMed  Google Scholar 

  6. Butt NM, Clark RE . Autografting as a risk factor for persisting iron overload in long-term survivors of acute myeloid leukaemia. Bone Marrow Transplant 2003; 32: 909–913.

    CAS  PubMed  Google Scholar 

  7. Altes A, Remacha AF, Sureda A et al. Iron overload might increase transplant-related mortality in haematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 29: 987–989.

    CAS  PubMed  Google Scholar 

  8. Harrison P, Neilson JR, Marwah SS et al. Role of non-transferrin bound iron in iron overload and liver dysfunction in long term survivors of acute leukaemia and bone marrow transplantation. J Clin Pathol 1996; 49: 853–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cetin T, Arpaci F, Yilmaz MI et al. Oxidative stress in patients undergoing high-dose chemotherapy plus peripheral blood stem cell transplantation. Biol Trace Elem Res 2004; 97: 237–248.

    CAS  PubMed  Google Scholar 

  10. Reichard P, Ehrenberg A . Ribonucleotide reductase – a radical enzyme. Science 1983; 221: 514–519.

    CAS  PubMed  Google Scholar 

  11. Cazzola M, Bergamaschi G, Dezza L, Arosio P . Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: achievements and prospects. Blood 1990; 75: 1903–1919.

    CAS  PubMed  Google Scholar 

  12. Hann HW, Stahlhut MW, Blumberg BS . Iron nutrition and tumor growth: decreased tumor growth in iron-deficient mice. Cancer Res 1988; 48: 4168–4170.

    CAS  PubMed  Google Scholar 

  13. Slivka A, Kang J, Cohen G . Hydroxyl radicals and the toxicity of oral iron. Biochem Pharmacol 1986; 35: 553–556.

    CAS  PubMed  Google Scholar 

  14. Wolfe L, Olivieri N, Sallan D et al. Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med 1985; 312: 1600–1603.

    CAS  PubMed  Google Scholar 

  15. Halliwell B . Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 1999; 443: 37–52.

    CAS  PubMed  Google Scholar 

  16. Hershko C . Mechanism of iron toxicity and its possible role in red cell membrane damage. Semin Hematol 1989; 26: 277–285.

    CAS  PubMed  Google Scholar 

  17. Fenton H . Oxidation of tartatic acid on the presence of iron. J Biol Chem 1894; 65: 899.

    CAS  Google Scholar 

  18. McCord J . SOD: an enzymatic function for erythrocuprein. J Biol Chem 1969; 244: 6049.

    CAS  PubMed  Google Scholar 

  19. Beauchamp C, Fridovich I . A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 1970; 245: 4641–4646.

    CAS  PubMed  Google Scholar 

  20. Darley-Usmar V, Halliwell B . Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 1996; 13: 649–662.

    CAS  PubMed  Google Scholar 

  21. Halliwell B . Iron and Damage to Biomolecules. CRC Press: Boca Raton, FL, 1989; pp 209–236.

    Google Scholar 

  22. von Bonsdorff L, Lindeberg E, Sahlstedt L et al. Bleomycin-detectable iron assay for non-transferrin-bound iron in hematologic malignancies. Clin Chem 2002; 48: 307–314.

    CAS  PubMed  Google Scholar 

  23. Halliwell B, Gutteridge JM, Blake D . Metal ions and oxygen radical reactions in human inflammatory joint disease. Philos Trans R Soc Lond B Biol Sci 1985; 311: 659–671.

    CAS  PubMed  Google Scholar 

  24. Gutteridge JM, Rowley DA, Griffiths E, Halliwell B . Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin Sci (Lond) 1985; 68: 463–467.

    CAS  Google Scholar 

  25. Durken M, Herrnring C, Finckh B et al. Impaired plasma antioxidative defense and increased nontransferrin-bound iron during high-dose chemotherapy and radiochemotherapy preceding bone marrow transplantation. Free Radic Biol Med 2000; 28: 887–894.

    CAS  PubMed  Google Scholar 

  26. Worwood M . HFE mutations as risk factors in disease. Best Pract Res Clin Haematol 2002; 15: 295–314.

    CAS  PubMed  Google Scholar 

  27. Grigg AP, Bhathal PS . Compound heterozygosity for haemochromatosis gene mutations and hepatic iron overload in allogeneic bone marrow transplant recipients. Pathology 2001; 33: 44–49.

    CAS  PubMed  Google Scholar 

  28. Halliwell B, Aruoma OI, Mufti G, Bomford A . Bleomycin-detectable iron in serum from leukaemic patients before and after chemotherapy. Therapeutic implications for treatment with oxidant-generating drugs. FEBS Lett 1988; 241: 202–204.

    CAS  PubMed  Google Scholar 

  29. Carmine TC, Evans P, Bruchelt G et al. Presence of iron catalytic for free radical reactions in patients undergoing chemotherapy: implications for therapeutic management. Cancer Lett 1995; 94: 219–226.

    CAS  PubMed  Google Scholar 

  30. Pryor WA . Measurement of oxidative stress status in humans. Cancer Epidemiol Biomarkers Prev 1993; 2: 289–292.

    CAS  PubMed  Google Scholar 

  31. Touati D . The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SODS in relation to other elements of the defence system against oxygen toxicity. Free Radic Res Commun 1989; 8: 1–9.

    CAS  PubMed  Google Scholar 

  32. Antunes F, Salvador A, Marinho HS et al. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med 1996; 21: 917–943.

    CAS  PubMed  Google Scholar 

  33. Hunnisett A, Davies S, McLaren-Howard J et al. Lipoperoxides as an index of free radical activity in bone marrow transplant recipients. Preliminary observations. Biol Trace Elem Res 1995; 47: 125–132.

    CAS  PubMed  Google Scholar 

  34. Durken M, Agbenu J, Finckh B et al. Deteriorating free radical-trapping capacity and antioxidant status in plasma during bone marrow transplantation. Bone Marrow Transplant 1995; 15: 757–762.

    CAS  PubMed  Google Scholar 

  35. Clemens MR, Ladner C, Schmidt H et al. Decreased essential antioxidants and increased lipid hydroperoxides following high-dose radiochemotherapy. Free Radic Res Commun 1989; 7: 227–232.

    CAS  PubMed  Google Scholar 

  36. Wayner DD, Burton GW, Ingold KU et al. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 1987; 924: 408–419.

    CAS  PubMed  Google Scholar 

  37. Tomas JF, Pinilla I, Garcia-Buey ML et al. Long-term liver dysfunction after allogeneic bone marrow transplantation: clinical features and course in 61 patients. Bone Marrow Transplant 2000; 26: 649–655.

    CAS  PubMed  Google Scholar 

  38. Angelucci E, Muretto P, Nicolucci A et al. Effects of iron overload and hepatitis C virus positivity in determining progression of liver fibrosis in thalassemia following bone marrow transplantation. Blood 2002; 100: 17–21.

    CAS  PubMed  Google Scholar 

  39. Iqbal M, Creger RJ, Fox RM et al. Laparoscopic liver biopsy to evaluate hepatic dysfunction in patients with hematologic malignancies: a useful tool to effect changes in management. Bone Marrow Transplant 1996; 17: 655–662.

    CAS  PubMed  Google Scholar 

  40. Azar N, Valla D, Abdel-Samad I et al. Liver dysfunction in allogeneic bone marrow transplantation recipients. Transplantation 1996; 62: 56–61.

    CAS  PubMed  Google Scholar 

  41. Strasser SI, Sullivan KM, Myerson D et al. Cirrhosis of the liver in long-term marrow transplant survivors. Blood 1999; 93: 3259–3266.

    CAS  PubMed  Google Scholar 

  42. Strasser SI, McDonald GB . Hepatitis viruses and hematopoietic cell transplantation: a guide to patient and donor management. Blood 1999; 93: 1127–1136.

    CAS  PubMed  Google Scholar 

  43. Distante S, Bjoro K, Hellum KB et al. Raised serum ferritin predicts non-response to interferon and ribavirin treatment in patients with chronic hepatitis C infection. Liver 2002; 22: 269–275.

    CAS  PubMed  Google Scholar 

  44. Rubin RB, Barton AL, Banner BF, Bonkovsky HL . Iron and chronic viral hepatitis: emerging evidence for an important interaction. Digest Dis 1995; 13: 223–238.

    CAS  Google Scholar 

  45. Bonkovsky HL . Iron as a comorbid factor in chronic viral hepatitis. Am J Gastroenterol 2002; 97: 1–4.

    CAS  PubMed  Google Scholar 

  46. McDonald GB, Hinds MS, Fisher LD et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 1993; 118: 255–267.

    CAS  PubMed  Google Scholar 

  47. Lee JL, Gooley T, Bensinger W et al. Veno-occlusive disease of the liver after busulfan, melphalan, and thiotepa conditioning therapy: incidence, risk factors, and outcome. Biol Blood Marrow Transplant 1999; 5: 306–315.

    CAS  PubMed  Google Scholar 

  48. Litzow MR, Perez WS, Klein JP et al. Comparison of outcome following allogeneic bone marrow transplantation with cyclophosphamide-total body irradiation versus busulphan-cyclophosphamide conditioning regimens for acute myelogenous leukaemia in first remission. Br J Haematol 2002; 119: 1115–1124.

    CAS  PubMed  Google Scholar 

  49. Morado M, Ojeda E, Garcia-Bustos J et al. BMT: serum ferritin as risk factor for veno-occlusive disease of the liver. Prospective cohort study. Hematology 2000; 4: 505–512.

    CAS  PubMed  Google Scholar 

  50. Hunter RL, Bennett B, Towns M, Vogler WR . Transferrin in disease II: defects in the regulation of transferrin saturation with iron contribute to susceptibility to infection. Am J Clin Pathol 1984; 81: 748–753.

    CAS  PubMed  Google Scholar 

  51. von Bonsdorff L, Sahlstedt L, Ebeling F et al. Apotransferrin administration prevents growth of Staphylococcus epidermidis in serum of stem cell transplant patients by binding of free iron. FEMS Immunol Med Microbiol 2003; 37: 45–51.

    CAS  PubMed  Google Scholar 

  52. Gaziev D, Baronciani D, Galimberti M et al. Mucormycosis after bone marrow transplantation: report of four cases in thalassemia and review of the literature. Bone Marrow Transplant 1996; 17: 409–414.

    CAS  PubMed  Google Scholar 

  53. Barton JC, Coghlan ME, Reymann MT et al. Vibrio vulnificus infection in a hemodialysis patient receiving intravenous iron therapy. Clin Infect Dis 2003; 37: e63–67.

    PubMed  Google Scholar 

  54. Lee AC, Ha SY, Yuen KY, Lau YL . Listeria septicemia complicating bone marrow transplantation for Diamond–Blackfan syndrome. Pediatr Hematol Oncol 1995; 12: 295–299.

    CAS  PubMed  Google Scholar 

  55. Blei F, Puder DR . Yersinia enterocolitica bacteremia in a chronically transfused patient with sickle cell anemia. Case report and review of the literature. Am J Pediatr Hematol Oncol 1993; 15: 430–434.

    CAS  PubMed  Google Scholar 

  56. Maertens J, Demuynck H, Verbeken EK et al. Mucormycosis in allogeneic bone marrow transplant recipients: report of five cases and review of the role of iron overload in the pathogenesis. Bone Marrow Transplant 1999; 24: 307–312.

    CAS  PubMed  Google Scholar 

  57. Kontoghiorghes GJ, Weinberg ED . Iron: mammalian defense systems, mechanisms of disease, and chelation therapy approaches. Blood Rev 1995; 9: 33–45.

    CAS  PubMed  Google Scholar 

  58. Marx JJ . Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol 2002; 15: 411–426.

    CAS  PubMed  Google Scholar 

  59. Matinaho S, von Bonsdorff L, Rouhiainen A et al. Dependence of Staphylococcus epidermidis on non-transferrin-bound iron for growth. FEMS Microbiol Lett 2001; 196: 177–182.

    CAS  PubMed  Google Scholar 

  60. Iglesias-Osma C, Gonzalez-Villaron L, San Miguel JF et al. Iron metabolism and fungal infections in patients with haematological malignancies. J Clin Pathol 1995; 48: 223–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Autenrieth I, Hantke K, Heesemann J . Immunosuppression of the host and delivery of iron to the pathogen: a possible dual role of siderophores in the pathogenesis of microbial infections? Med Microbiol Immunol (Berl) 1991; 180: 135–141.

    CAS  Google Scholar 

  62. Clark JG, Hansen JA, Hertz MI et al. NHLBI workshop summary. Idiopathic pneumonia syndrome after bone marrow transplantation. Am Rev Respir Dis 1993; 147: 1601–1606.

    CAS  PubMed  Google Scholar 

  63. Kantrow SP, Hackman RC, Boeckh M et al. Idiopathic pneumonia syndrome: changing spectrum of lung injury after marrow transplantation. Transplantation 1997; 63: 1079–1086.

    CAS  PubMed  Google Scholar 

  64. Wong R, Rondon G, Saliba RM et al. Idiopathic pneumonia syndrome after high-dose chemotherapy and autologous hematopoietic stem cell transplantation for high-risk breast cancer. Bone Marrow Transplant 2003; 31: 1157–1163.

    CAS  PubMed  Google Scholar 

  65. Fukuda T, Hackman RC, Guthrie KA et al. Risks and outcomes of idiopathic pneumonia syndrome after nonmyeloablative and conventional conditioning regimens for allogeneic hematopoietic stem cell transplantation. Blood 2003; 102: 2777–2785.

    PubMed  Google Scholar 

  66. Crawford SW, Hackman RC . Clinical course of idiopathic pneumonia after bone marrow transplantation. Am Rev Respir Dis 1993; 147: 1393–1400.

    CAS  PubMed  Google Scholar 

  67. Balla J, Jacob HS, Balla G et al. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci USA 1993; 90: 9285–9289.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Balla J, Nath KA, Balla G et al. Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. Am J Physiol 1995; 268: L321–327.

    CAS  PubMed  Google Scholar 

  69. Haddad IY, Panoskaltsis-Mortari A, Ingbar DH et al. High levels of peroxynitrite are generated in the lungs of irradiated mice given cyclophosphamide and allogeneic T cells. A potential mechanism of injury after marrow transplantation. Am J Respir Cell Mol Biol 1999; 20: 1125–1135.

    CAS  PubMed  Google Scholar 

  70. Bhalla KS, Wilczynski SW, Abushamaa AM et al. Pulmonary toxicity of induction chemotherapy prior to standard or high-dose chemotherapy with autologous hematopoietic support. Am J Respir Crit Care Med 2000; 161: 17–25.

    CAS  PubMed  Google Scholar 

  71. Blackwell TS, Christman JW, Hagan T et al. Oxidative stress and NF-kappaB activation: correlation in patients following allogeneic bone marrow transplantation. Antioxid Redox Signal 2000; 2: 93–102.

    CAS  PubMed  Google Scholar 

  72. Bhalla KS, Folz RJ . Idiopathic pneumonia syndrome after syngeneic bone marrow transplant in mice. Am J Respir Crit Care Med 2002; 166: 1579–1589.

    PubMed  Google Scholar 

  73. Clark JG, Madtes DK, Martin TR et al. Idiopathic pneumonia after bone marrow transplantation: cytokine activation and lipopolysaccharide amplification in the bronchoalveolar compartment. Crit Care Med 1999; 27: 1800–1806.

    CAS  PubMed  Google Scholar 

  74. Panoskaltsis-Mortari A, Hermanson JR, Taras E et al. Acceleration of idiopathic pneumonia syndrome (IPS) in the absence of donor MIP-1 alpha (CCL3) after allogeneic BMT in mice. Blood 2003; 101: 3714–3721.

    CAS  PubMed  Google Scholar 

  75. Panoskaltsis-Mortari A, Taylor PA, Yaeger TM et al. The critical early proinflammatory events associated with idiopathic pneumonia syndrome in irradiated murine allogeneic recipients are due to donor T cell infusion and potentiated by cyclophosphamide. J Clin Invest 1997; 100: 1015–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hildebrandt GC, Duffner UA, Olkiewicz KM et al. A critical role for CCR2/MCP-1 interactions in the development of idiopathic pneumonia syndrome after allogeneic bone marrow transplantation. Blood 2004; 103: 2417–2426.

    CAS  PubMed  Google Scholar 

  77. Epperly MW, Travis EL, Sikora C, Greenberger JS . Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 1999; 5: 204–214.

    CAS  PubMed  Google Scholar 

  78. DiNubile MJ, Stossel TP, Ljunghusen OC et al. Prognostic implications of declining plasma gelsolin levels after allogeneic stem cell transplantation. Blood 2002; 100: 4367–4371.

    CAS  PubMed  Google Scholar 

  79. Adams JM, Hauser CJ, Livingston DH et al. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma 2001; 51: 452–456 (discussion 456–457).

    CAS  PubMed  Google Scholar 

  80. Kuwano K, Nakashima N, Inoshima I et al. Oxidative stress in lung epithelial cells from patients with idiopathic interstitial pneumonias. Eur Respir J 2003; 21: 232–240.

    CAS  PubMed  Google Scholar 

  81. Kuwano K, Hagimoto N, Maeyama T et al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab Invest 2002; 82: 1695–1706.

    CAS  PubMed  Google Scholar 

  82. Crouch E . Pathobiology of pulmonary fibrosis. Am J Physiol 1990; 259: L159–184.

    CAS  PubMed  Google Scholar 

  83. Strieter RM, Kunkel SL . Acute lung injury: the role of cytokines in the elicitation of neutrophils. J Investig Med 1994; 42: 640–651.

    CAS  PubMed  Google Scholar 

  84. Yano M, Hayashi H, Wakusawa S et al. Long term effects of phlebotomy on biochemical and histological parameters of chronic hepatitis C. Am J Gastroenterol 2002; 97: 133–137.

    CAS  PubMed  Google Scholar 

  85. Fontana RJ, Israel J, LeClair P et al. Iron reduction before and during interferon therapy of chronic hepatitis C: results of a multicenter, randomized, controlled trial. Hepatology 2000; 31: 730–736.

    CAS  PubMed  Google Scholar 

  86. Fargion S, Fracanzani AL, Rossini A et al. Iron reduction and sustained response to interferon-alpha therapy in patients with chronic hepatitis C: results of an Italian multicenter randomized study. Am J Gastroenterol 2002; 97: 1204–1210.

    CAS  PubMed  Google Scholar 

  87. Angelucci E, Muretto P, Lucarelli G et al. Phlebotomy to reduce iron overload in patients cured of thalassemia by bone marrow transplantation. Italian Cooperative Group for Phlebotomy Treatment of Transplanted Thalassemia Patients. Blood 1997; 90: 994–998.

    CAS  PubMed  Google Scholar 

  88. Mariotti E, Angelucci E, Agostini A et al. Evaluation of cardiac status in iron-loaded thalassaemia patients following bone marrow transplantation: improvement in cardiac function during reduction in body iron burden. Br J Haematol 1998; 103: 916–921.

    CAS  PubMed  Google Scholar 

  89. Porter JB . Practical management of iron overload. Br J Haematol 2001; 115: 239–252.

    CAS  PubMed  Google Scholar 

  90. Chaston TB, Richardson DR . Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol 2003; 73: 200–210.

    CAS  PubMed  Google Scholar 

  91. Nisbet-Brown E, Olivieri NF, Giardina PJ et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet 2003; 361: 1597–1602.

    CAS  PubMed  Google Scholar 

  92. Gabutti V, Piga A . Results of long-term iron-chelating therapy. Acta Haematol 1996; 95: 26–36.

    CAS  PubMed  Google Scholar 

  93. Brittenham GM, Griffith PM, Nienhuis AW et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 1994; 331: 567–573.

    CAS  PubMed  Google Scholar 

  94. Yoshida Y, Furuta S, Niki E . Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta 1993; 1210: 81–88.

    CAS  PubMed  Google Scholar 

  95. Seifert CF, Nesser ME, Thompson DF . Dexrazoxane in the prevention of doxorubicin-induced cardiotoxicity. Ann Pharmacother 1994; 28: 1063–1072.

    CAS  PubMed  Google Scholar 

  96. Giardini C, Galimberti M, Lucarelli G et al. Desferrioxamine therapy accelerates clearance of iron deposits after bone marrow transplantation for thalassaemia. Br J Haematol 1995; 89: 868–873.

    CAS  PubMed  Google Scholar 

  97. Li CK, Lai DH, Shing MM et al. Early iron reduction programme for thalassaemia patients after bone marrow transplantation. Bone Marrow Transplant 2000; 25: 653–656.

    CAS  PubMed  Google Scholar 

  98. Lichtman SM, Attivissimo L, Goldman IS et al. Secondary hemochromatosis as a long-term complication of the treatment of hematologic malignancies. Am J Hematol 1999; 61: 262–264.

    CAS  PubMed  Google Scholar 

  99. de la Serna J, Bornstein R, Garcia-Bueno MJ, Lahuerta-Palacios JJ . Iron depletion by phlebotomy with recombinant erythropoietin prior to allogeneic transplantation to prevent liver toxicity. Bone Marrow Transplant 1999; 23: 95–97.

    CAS  PubMed  Google Scholar 

  100. Schofield RS, Aranda Jr JM, Hill JA, Streiff R . Cardiac transplantation in a patient with hereditary hemochromatosis: role of adjunctive phlebotomy and erythropoietin. J Heart Lung Transplant 2001; 20: 696–698.

    CAS  PubMed  Google Scholar 

  101. Bilgrami S, Bartolomeo A, Synnott V, Rickles FR . Management of hemosiderosis complicated by coexistent anemia with recombinant human erythropoietin and phlebotomy. Acta Haematol 1993; 89: 141–143.

    CAS  PubMed  Google Scholar 

  102. Adamson J . Erythropoietin, iron metabolism, and red blood cell production. Semin Hematol 1996; 33: 5–7 (discussion 8–9).

    CAS  PubMed  Google Scholar 

  103. Brugnara C, Chambers LA, Malynn E et al. Red blood cell regeneration induced by subcutaneous recombinant erythropoietin: iron-deficient erythropoiesis in iron-replete subjects. Blood 1993; 81: 956–964.

    CAS  PubMed  Google Scholar 

  104. Brugnara C, Colella GM, Cremins J et al. Effects of subcutaneous recombinant human erythropoietin in normal subjects: development of decreased reticulocyte hemoglobin content and iron-deficient erythropoiesis. J Lab Clin Med 1994; 123: 660–667.

    CAS  PubMed  Google Scholar 

  105. von Bonsdorff L, Tolo H, Lindeberg E et al. Development of a pharmaceutical apotransferrin product for iron binding therapy. Biologicals 2001; 29: 27–37.

    CAS  PubMed  Google Scholar 

  106. Sahlstedt L, von Bonsdorff L, Ebeling F et al. Effective binding of free iron by a single intravenous dose of human apotransferrin in haematological stem cell transplant patients. Br J Haematol 2002; 119: 547–553.

    CAS  PubMed  Google Scholar 

  107. Martelius T, Scholz M, Krogerus L et al. Antiviral and immunomodulatory effects of desferrioxamine in cytomegalovirus-infected rat liver allografts with rejection. Transplantation 1999; 68: 1753–1761.

    CAS  PubMed  Google Scholar 

  108. Chandra J, Hackbarth J, Le S et al. Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 2003; 102: 4512–4519.

    CAS  PubMed  Google Scholar 

  109. Ziegler TR . Glutamine supplementation in cancer patients receiving bone marrow transplantation and high dose chemotherapy. J Nutr 2001; 131: 2578S–2584S (discussion 2590S).

    CAS  PubMed  Google Scholar 

  110. Bagchi D, Prasad R, Das DK . Direct scavenging of free radicals by captopril, an angiotensin converting enzyme inhibitor. Biochem Biophys Res Commun 1989; 158: 52–57.

    CAS  PubMed  Google Scholar 

  111. Chopra M, Scott N, McMurray J et al. Captopril: a free radical scavenger. Br J Clin Pharmacol 1989; 27: 396–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ringden O, Remberger M, Lehmann S et al. N-acetylcysteine for hepatic veno-occlusive disease after allogeneic stem cell transplantation. Bone Marrow Transplant 2000; 25: 993–996.

    CAS  PubMed  Google Scholar 

  113. Colombo AA, Alessandrino EP, Bernasconi P et al. N-acetylcysteine in the treatment of steroid-resistant acute graft-versus-host-disease: preliminary results. Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Transplantation 1999; 68: 1414–1416.

    CAS  PubMed  Google Scholar 

  114. Brown SA, Goringe A, Fegan C et al. Parenteral glutamine protects hepatic function during bone marrow transplantation. Bone Marrow Transplant 1998; 22: 281–284.

    CAS  PubMed  Google Scholar 

  115. Nattakom TV, Charlton A, Wilmore DW . Use of vitamin E and glutamine in the successful treatment of severe veno-occlusive disease following bone marrow transplantation. Nutr Clin Pract 1995; 10: 16–18.

    CAS  PubMed  Google Scholar 

  116. Goringe AP, Brown S, O'Callaghan U et al. Glutamine and vitamin E in the treatment of hepatic veno-occlusive disease following high-dose chemotherapy. Bone Marrow Transplant 1998; 21: 829–832.

    CAS  PubMed  Google Scholar 

  117. Jonas CR, Puckett AB, Jones DP et al. Plasma antioxidant status after high-dose chemotherapy: a randomized trial of parenteral nutrition in bone marrow transplantation patients. Am J Clin Nutr 2000; 72: 181–189.

    CAS  PubMed  Google Scholar 

  118. Murray SM, Pindoria S . Nutrition support for bone marrow transplant patients. Cochrane Database Syst Rev 2002; CD002920.

  119. Anderson PM, Ramsay NK, Shu XO et al. Effect of low-dose oral glutamine on painful stomatitis during bone marrow transplantation. Bone Marrow Transplant 1998; 22: 339–344.

    CAS  PubMed  Google Scholar 

  120. Haddad IY . Idiopathic pneumonia after marrow transplantation: when are antioxidants effective? Am J Respir Crit Care Med 2002; 166: 1532–1534.

    PubMed  Google Scholar 

  121. Sjoo F, Aschan J, Barkholt L et al. N-acetyl-L-cysteine does not affect the pharmacokinetics or myelosuppressive effect of busulfan during conditioning prior to allogeneic stem cell transplantation. Bone Marrow Transplant 2003; 32: 349–354.

    CAS  PubMed  Google Scholar 

  122. Weglicki WB, Mak IT, Simic MG . Mechanisms of cardiovascular drugs as antioxidants. J Mol Cell Cardiol 1990; 22: 1199–1208.

    CAS  PubMed  Google Scholar 

  123. Roberts NA, Robinson PA . Copper chelates of antirheumatic and anti-inflammatory agents: their superoxide dismutase-like activity and stability. Br J Rheumatol 1985; 24: 128–136.

    CAS  PubMed  Google Scholar 

  124. Bhuyan KC, Bhuyan DK, Santos O, Podos SM . Antioxidant and anticataractogenic effects of topical captopril in diquat-induced cataract in rabbits. Free Radic Biol Med 1992; 12: 251–261.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L I Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evens, A., Mehta, J. & Gordon, L. Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34, 561–571 (2004). https://doi.org/10.1038/sj.bmt.1704591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704591

Keywords

This article is cited by

Search

Quick links