Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Recovery of Vα24+ NKT cells after hematopoietic stem cell transplantation

Summary:

Human Vα24+ natural killer T (NKT) cells have an invariant T-cell receptor-α chain and are activated in a CD1d-restricted manner. Vα24+ NKT cells are thought to regulate immune responses and to play important roles in the induction of allograft tolerance. In this report, we analyzed the recovery of Vα24+ NKT cells after hematopoietic stem cell transplantation and its correlation with graft-versus-host disease (GVHD). Patients who received a dose-reduced conditioning regimen, antithymocyte globulin- or CAMPATH-1H-containing conditioning regimen were excluded. NKT cells were reconstituted within 1 month after transplantation in peripheral blood stem cell transplantation recipients, while their numbers remained low for more than 1 year in bone marrow transplantation (BMT) recipients. The number of Vα24+ NKT cells in BMT recipients with acute GVHD was lower than that in patients without acute GVHD, and both the CD4+ and CD4 Vα24+ NKT subsets were significantly reduced. With regard to chronic GVHD, BMT recipients with extensive GVHD had significantly fewer Vα24+ NKT cells than other patients. Furthermore, the number of CD4+ Vα24+ NKT cells was also significantly reduced in patients with chronic extensive GVHD. Our results raise the possibility that the number of Vα24+ NKT cells could be related to the development of GVHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fujimaki K, Maruta A, Yoshida M et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 2001; 27: 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  2. Storek J, Dawson MA, Storer B et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380–3389.

    Article  CAS  PubMed  Google Scholar 

  3. Fowlkes BJ, Kruisbeek AM, Ton-That H et al. A novel population of T cell receptor αβ-bearing thymocytes which predominantly express a single Vβ8 gene family. Nature 1987; 329: 251–254.

    Article  CAS  PubMed  Google Scholar 

  4. Budd RC, Miescher GC, Howe RC et al. Developmentally regulated expression of T cell receptor β chain variable domain is immature thymocytes. J Exp Med 1987; 166: 577–582.

    Article  CAS  PubMed  Google Scholar 

  5. Lantz O, Bendelac A . An invariant T cell receptor α chain is used by a unique subset MHC class I-specific CD4+ and CD4CD8T cells in mice and humans. J Exp Med 1994; 180: 1097–1106.

    Article  CAS  PubMed  Google Scholar 

  6. Dellabona P, Padovan E, Casorati G et al. An invariant Vα-JαQ/Vα11 T cell receptor is expressed in all individuals by clonally expanded CD4CD8 cells. J Exp Med 1994; 180: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  7. Porcelli S, Gerdes D, Fertig AM, Balk SP . Human T cells expressing an invariant Vα24-JαQ TCRα are CD4 and heterogeneous with respect to TCRβ expression. Hum Immunol 1996; 48: 63–67.

    Article  CAS  PubMed  Google Scholar 

  8. Godfrey DI, Hammond KJL, Poulton LD, Baxter AG . NKT cells: facts, functions and fallacies. Immunol Today 2000; 21: 573–583.

    Article  CAS  PubMed  Google Scholar 

  9. Joyce S . CD1d and natural T cells: how their properties jump-start the immune system. Cell Mol Life Sci 2001; 58: 442–469.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng D, Lewis D, Dejbakhsh-Jones S et al. Bone marrow NK1.1 and NK1.1+ T cells reciprocally regulate acute graft versus host disease. J Exp Med 1999; 189: 1073–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker J, Verneris MR, Ito M et al. Expansion of cytolytic CD8+ natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon γ production. Blood 2001; 97: 2923–2931.

    Article  CAS  PubMed  Google Scholar 

  12. Thiede C, Florek M, Bornhäuser M et al. Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 1999; 23: 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi T, Nieda M, Koezuka Y et al. Analysis of human Vα24+CD4+ NKT cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 2000; 164: 4458–4464.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi T, Chiba S, Nieda M et al. Analysis of human Vα24+CD8+ NKT Cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 2002; 168: 3140–3144.

    Article  CAS  PubMed  Google Scholar 

  15. Karadimitris A, Gadola S, Altamirano M et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci USA 2001; 98: 3294–3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee PT, Benlagha K, Teyton L, Bendelac A . Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 2002; 195: 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Exley MA, Tahir SMA, Cheng O et al. A major fraction of human bone marrow lymphocyte are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 2001; 167: 5531–5534.

    Article  CAS  PubMed  Google Scholar 

  18. Kim CH, Johnston B, Butcher EC . Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among Vα24+Vβ11+ NKT cell subsets with distinct cytokine-producing capacity. Blood 2002; 100: 11–16.

    Article  CAS  PubMed  Google Scholar 

  19. Sonoda K, Exley M, Snapper S et al. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J Exp Med 1999; 190: 1215–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seino K, Fukao K, Muramoto K et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 2001; 98: 2577–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chargui J, Hase T, Wada S et al. NKT cells as nonspecific immune-regulator inducing tolerance in mouse model transplantation. Transplant Proc 2001; 33: 3833–3834.

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi M, Zeng D, Shizuru J et al. Immune tolerance to combined organ and bone marrow transplants after fractionated lymphoid irradiation involves regulatory NKT cells and clonal deletion. J Immunol 2002; 169: 5564–5570.

    Article  CAS  PubMed  Google Scholar 

  23. Ikehara Y, Yasunami Y, Kodama S et al. CD4+Vα24 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest 2000; 105: 1761–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gumperz JE, Miyake S, Yamamura T, Brenner MB . Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002; 195: 625–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teshima T, Ferrara JLM . Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol 2002; 39: 15–22.

    Article  PubMed  Google Scholar 

  26. Ellison CA, Fischer JMM, HayGlass KT, Gartner JG . Murine graft-versus-host disease in an F1-hybrid model using IFN-α gene knockout donors. J Immunol 1998; 161: 631–640.

    CAS  PubMed  Google Scholar 

  27. Allen RD, Staley TA, Sidman CL . Differential cytokine expression in acute and chronic murine graft-versus-host-disease. Eur J Immunol 1993; 23: 333–337.

    Article  CAS  PubMed  Google Scholar 

  28. Brok HPM, Heidt PJ, van der Meide PH et al. Interferon-γ prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Immunol 1993; 151: 6451–6459.

    CAS  PubMed  Google Scholar 

  29. Yang YG, Dey BR, Sergio JJ et al. Donor-derived interferon γ is required for inhibition of acute graft-versus-host disease by interleukin 12. J Clin Invest 1998; 102: 2126–2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy WJ, Welniak LA, Taub DD et al. Differential effects of the absence of interferon-γ and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Clin Invest 1998; 102: 1742–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lan F, Zeng D, Higuchi M et al. Predominance of NK1.1+TCRαβ+ or DX5+TCRαβ+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: ‘natural suppressor’ cells. J Immunol 2001; 167: 2087–2096.

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi T, Nakamura K, Chiba S et al. Vα24+ natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 2003; 64: 586–592.

    Article  CAS  PubMed  Google Scholar 

  33. Sonoda K, Faunce DE, Taniguchi M et al. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 2001; 166: 42–50.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor PA, Lees CJ, Blazar BR . The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eri Nagata for providing excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Haraguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraguchi, K., Takahashi, T., Hiruma, K. et al. Recovery of Vα24+ NKT cells after hematopoietic stem cell transplantation. Bone Marrow Transplant 34, 595–602 (2004). https://doi.org/10.1038/sj.bmt.1704582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704582

Keywords

Search

Quick links