Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme

Summary:

The main goal of post-transplantation monitoring in hematopoietic stem cell transplantation (HSCT) is to predict negative events, such as disease relapse, graft rejection and graft-versus-host disease, in order to intervene with appropriate therapy. In this context, chimerism analysis is an important method in monitoring post HSCT outcome. Mixed chimerism (MC) is mainly evaluated to define engraftment and relapse. Detection of MC is a prerequisite in both myeloablative and nonmyeloablative HSCT, in order to assess the graft status and decide later therapeutic strategies such as donor lymphocyte infusion. In this review, we discuss various techniques including erythrocyte phenotyping, cytogenetic analysis, fluorescent in situ hybridization, restriction fragment length polymorphism, STR/VNTR analysis and real-time quantitative PCR, along with the various methods used to detect minimal residual disease (MRD) in different diseases such as chronic myeloid leukemia, acute myelomonocytic leukemia or acute lymphoblastic leukemia. The review mainly highlights the optimal methodological approach, which needs to be informative, sensitive and quantitatively accurate for MC detection. Future of post HSCT graft monitoring lies in the selection of the most accurate and sensitive technique to determine both MC and MRD. Such an approach would be helpful in not only determining relapse or rejection, but also in ascertaining various responses to different treatment modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Rose HJ . A Handbook of Greek Mythology. Routledge: London and New York, 1989.

    Google Scholar 

  2. McCann SR, Lawler M . Mixed chimerism: detection and significance following BMT. Bone Marrow Transplant 1993; 11: 91–94.

    CAS  PubMed  Google Scholar 

  3. Mapara MY, Kim YM, Marx J et al. Donor lymphocyte infusion-mediated graft-versus-leukemia effects in mixed chimeras established with a nonmyeloablative conditioning regimen: extinction of graft-versus-leukemia effects after conversion to full donor chimerism. Transplantation 2003; 76: 297–305.

    Article  PubMed  Google Scholar 

  4. Kvasnicka HM, Wickenhauser C, Thiele J et al. Mixed chimerism of bone marrow vessels (endothelial cells, myofibroblasts) following allogeneic transplantation for chronic myelogenous leukemia. Leuk Lymphoma 2003; 44: 321–328.

    Article  PubMed  Google Scholar 

  5. Elmaagacli A, Peceney R, Steckel N et al. Outcome of transplantation of highly purified peripheral blood CD34+ cells with T cells add back compared with unmanipulated bone marrow or peripheral blood stem cells from HLA identical sibling donors in first chronic phase CML. Blood 2003; 102: 446–453.

    Article  CAS  Google Scholar 

  6. Bader P, Hancock J, Kreyenberg H et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  7. Bader P, Beck J, Frey A et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR inpatients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 1998; 2: 487–495.

    Article  Google Scholar 

  8. Bader P, Holle W, Klingebiel T et al. Mixed hematopoietic chimerism after allogeneic bone marrow transplantation: the impact of quantitative PCR analysis for prediction of relapses and graft rejection in children. Bone Marrow Transplant 1997; 19: 697–702.

    Article  CAS  PubMed  Google Scholar 

  9. O'Donnell MR, Long GD, Parker PM et al. Busulfan/cyclophosphamide as conditioning regimen for allogeneic bone marrow transplantation for myelodysplasia. J Clin Oncol 1995; 13: 2973–2979.

    Article  CAS  PubMed  Google Scholar 

  10. Perreault C, Roy DC, Fortin C . Immunodominant minor histocompatibility antigens: the major ones. Immunol Today 1998; 19: 69–74.

    Article  CAS  PubMed  Google Scholar 

  11. Mutis T, Schrama E, van Luxemburg-Heijs SA et al. HLA class II restricted T-cell reactivity to a developmentally regulated antigen shared by leukemic cells and CD34+ early progenitor cells. Blood 1997; 90: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  12. Castro JE, Ball ED . Development of allogeneic hematopoietic stem cell transplantation (HSCT). Cancer Treat Res 2002; 110: 1–37.

    Article  PubMed  Google Scholar 

  13. Au WY, Chan EC, Lie AK et al. Poor engraftment after allogeneic bone marrow transplantation: role of chimerism analysis in treatment and outcome. Ann Hematol 2003; 82: 410–415.

    Article  CAS  PubMed  Google Scholar 

  14. Winiarski J, Gustafsson A, Wester D et al. Follow-up of chimerism, including T- and B-lymphocytes and granulocytes in children more than one year after allogeneic bone marrow transplantation. Pediatr Transplant 2000; 4: 132–139.

    Article  CAS  PubMed  Google Scholar 

  15. Park SJ, Min WS, Yang IH et al. Effects of mixed chimerism and immune modulation on GVHD, disease recurrence and survival after HLA-identical marrow transplantation for hematologic malignancies. Korean J Intern Med 2000; 15: 224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han D, Ricordi C, Xu X et al. Quantitative polymerase chain reaction assessment of chimerism in non-human primates after sex-mismatched islet and bone marrow transplantation. Transplantation 2000; 69: 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  17. Socie G, Lawler M, Gluckman E et al. Studies on hemopoietic chimerism following allogeneic bone marrow transplantation in the molecular biology era. Leuk Res 1995; 19: 497–504.

    Article  CAS  PubMed  Google Scholar 

  18. Winiarski J, Gustafsson A, Wester D et al. Follow-up of chimerism, including T- and B-lymphocytes and granulocytes in children more than one year after allogeneic bone marrow transplantation. Pediatr Transplant 2000; 4: 132–139.

    Article  CAS  PubMed  Google Scholar 

  19. Park SJ, Min WS, Yang IH et al. Effects of mixed chimerism and immune modulation on GVHD, disease recurrence and survival after HLA-identical marrow transplantation for hematologic malignancies. Korean J Intern Med 2000; 15: 224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han D, Ricordi C, Xu X et al. Quantitative polymerase chain reaction assessment of chimerism in non-human primates after sex-mismatched islet and bone marrow transplantation. Transplantation 2000; 69: 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  21. Thiele J, Wickenhauser C, Kvasnicka HM et al. Dynamics of lineage-restricted mixed chimerism following sex-mismatched allogeneic bone marrow transplantation. Histol Histopathol 2003; 18: 557–574.

    CAS  PubMed  Google Scholar 

  22. Winiarski J, Gustafsson A, Wester D et al. Follow-up of chimerism, including T- and B-lymphocytes and granulocytes in children more than one year after allogeneic bone marrow transplantation. Pediatr Transplant 2000; 4: 132–139.

    Article  CAS  PubMed  Google Scholar 

  23. Blazar BR, Lees CJ, Martin PJ et al. Host T cells resist graft-versus-host disease mediated by donor leukocyte infusions. J Immunol 2000; 165: 4901–4909.

    Article  CAS  PubMed  Google Scholar 

  24. Mackinnon S, Barnett L, Heller G et al. Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 1994; 83: 3409–3416.

    Article  CAS  PubMed  Google Scholar 

  25. Choi SJ, Lee KH, Lee JH et al. Prognostic value of hematopoietic chimerism in patients with acute leukemia after allogeneic bone marrow transplantation: a prospective study. Bone Marrow Transplant 2000; 26: 327–332.

    Article  CAS  PubMed  Google Scholar 

  26. Serrano J, Roman J, Herrera C et al. Increasing mixed haematopoietic chimaerism after BMT with total depletion of CD4+ and partial depletion of CD8+ lymphocytes is associated with a higher incidence of relapse. Bone Marrow Transplant 1999; 23: 475–482.

    Article  CAS  PubMed  Google Scholar 

  27. Ramirez M, Diaz MA, Garcia-Sanchez F et al. Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia. Bone Marrow Transplant 1996; 18: 1161–1165.

    CAS  PubMed  Google Scholar 

  28. Suttorp M, Schmitz N, Dreger P et al. Monitoring of chimerism after allogeneic bone marrow transplantation with unmanipulated marrow by use of DNA polymorphisms. Leukemia 1993; 7: 679–687.

    CAS  PubMed  Google Scholar 

  29. Molloy K, Goulden N, Lawler M et al. Patterns of hematopoietic chimerism following bone marrow transplantation for childhood acute lymphoblastic leukemia from volunteer unrelated donors. Blood 1996; 87: 3027–3031.

    Article  CAS  PubMed  Google Scholar 

  30. Alizadeh M, Bernard M, Danic B et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 2002; 99: 4618–4625.

    Article  CAS  PubMed  Google Scholar 

  31. Elmaagacli AH, Becks HW, Beelen DW et al. Detection of minimal residual disease and persistence of host-type hematopoiesis: a study in 28 patients after sex-mismatched, non-T cell-depleted allogeneic bone marrow transplantation for Philadelphia-chromosome positive chronic myelogenous leukemia. Bone Marrow Transplant 1995; 16: 823–829.

    CAS  PubMed  Google Scholar 

  32. Bertheas MF, Maraninchi D, Lafage M et al. Partial chimerism after T-cell-depleted allogeneic bone marrow transplantation in leukemic HLA-matched patients: a cytogenetic documentation. Blood 1988; 72: 89–93.

    Article  CAS  PubMed  Google Scholar 

  33. Seong CM, Giralt S, Kantarjian H et al. Early detection of relapse by hypermetaphase fluorescence in situ hybridization after allogeneic bone marrow transplantation for chronic myeloid leukemia. J Clin Oncol 2000; 18: 1831–1836.

    Article  CAS  PubMed  Google Scholar 

  34. Hibi S, Tsunamoto K, Todo S et al. Chimerism analysis on mononuclear cells in the CSF after allogeneic bone marrow transplantation. Bone Marrow Transplant 1997; 20: 503–506.

    Article  CAS  PubMed  Google Scholar 

  35. Najfeld V, Burnett W, Vlachos A et al. Interphase FISH analysis of sex-mismatched BMT utilizing dual color XY probes. Bone Marrow Transplant 1997; 19: 829–834.

    Article  CAS  PubMed  Google Scholar 

  36. Schaap N, Schattenberg A, Bar B et al. Red blood cell phenotyping is a sensitive technique for monitoring chronic myeloid leukaemia patients after T-cell-depleted bone marrow transplantation and after donor leucocyte infusion. Br J Haematol 2000; 108: 116–125.

    Article  CAS  PubMed  Google Scholar 

  37. Lo YM, Roux E, Jeannet M et al. Detection of chimaerism after bone marrow transplantation using the double amplification refractory mutation system. Br J Haematol 1993; 85: 223–226.

    Article  CAS  PubMed  Google Scholar 

  38. Buno I, Lopez-Fernandez C, Fernandez JL et al. Improving chimaerism quantification in bone marrow transplant recipients by image processing and analysis after restriction endonuclease in situ digestion (IPA-REISD). Leukemia 1996; 10: 1232–1236.

    CAS  PubMed  Google Scholar 

  39. Gardiner N, Lawler M, O'Riordan J et al. Donor chimerism is a strong indicator of disease free survival following bone marrow transplantation for chronic myeloid leukemia. Leukemia 1997; 11 (Suppl 3): 512–515.

    PubMed  Google Scholar 

  40. Hendriks EC, de Man AJ, van Berkel YC et al. Flow cytometric method for the routine follow-up of red cell populations after bone marrow transplantation. Br J Haematol 1997; 97: 141–145.

    Article  CAS  PubMed  Google Scholar 

  41. Petz LD, Calhoun L, Shulman IA et al. The sickle cell hemolytic transfusion reaction syndrome. Transfusion 1997; 37: 382–392.

    Article  CAS  PubMed  Google Scholar 

  42. Dewald GW, Schad CR, Christensen ER et al. Fluorescence in situ hybridization with X and Y chromosome probes for cytogenetic studies on bone marrow cells after opposite sex transplantation. Bone Marrow Transplant 1993; 12: 149–154.

    CAS  PubMed  Google Scholar 

  43. Knuutila S, Majander P, Ruutu T . 8;21 and 15;17 translocations: abnormalities in a single cell lineage in acute myeloid leukemia. Acta Haematol 1994; 92: 88–90.

    Article  CAS  PubMed  Google Scholar 

  44. van Lom K, Hagemeijer A, Smit EM et al. In situ hybridization on May–Grunwald Giemsa-stained bone marrow and blood smears of patients with hematologic disorders allows detection of cell-lineage-specific cytogenetic abnormalities. Blood 1993; 82: 884–888.

    Article  CAS  PubMed  Google Scholar 

  45. Jolkowska J, Wachowiak J, Lange A et al. Molecular assessment of post-BMT chimerism using various biologic specimens and automated DNA sizing technology. J Hematother Stem Cell Res 2000; 9: 263–268.

    Article  CAS  PubMed  Google Scholar 

  46. Newton CR, Heptinstall LE, Summers C et al. Amplification refractory mutation system for prenatal diagnosis and carrier assessment in cystic fibrosis. Lancet 1989; 2: 1481–1483.

    Article  CAS  PubMed  Google Scholar 

  47. Gosalvez J, Lopez-Fernandez C, Buno I et al. Restriction endonuclease in situ digestion (REISD) and fluorescence in situ hybridization (FISH) as complementary methods to analyze chimerism and residual disease after bone marrow transplantation. Cancer Genet Cytogenet 1996; 89: 141–145.

    Article  CAS  PubMed  Google Scholar 

  48. Elmaagacli AH, Beelen DW, Kroll M et al. Detection of CBFbeta/MYH11 fusion transcripts in patients with inv(16) acute myeloid leukemia after allogeneic bone marrow or peripheral blood progenitor cell transplantation. Bone Marrow Transplant 1998; 21: 159–166.

    Article  CAS  PubMed  Google Scholar 

  49. Serrano J, Roman J, Sanchez J et al. Molecular analysis of lineage-specific chimerism and minimal residual disease by RT-PCR of p210(BCR-ABL) and p190(BCR-ABL) after allogeneic bone marrow transplantation for chronic myeloid leukemia: increasing mixed myeloid chimerism and p190(BCR-ABL) detection precede cytogenetic relapse. Blood 2000; 95: 2659–2665.

    Article  CAS  PubMed  Google Scholar 

  50. Brunstein CG, Hirsch BA, Miller JS et al. Non-leukemic autologous reconstitution after allogeneic bone marrow transplantation for Ph-positive chronic myelogenous leukemia: extended remission preceding eventual relapse. Bone Marrow Transplant 2000; 26: 1173–1177.

    Article  CAS  PubMed  Google Scholar 

  51. Miyamura K, Barrett AJ, Kodera Y et al. Minimal residual disease after bone marrow transplantation for chronic myelogenous leukemia and implications for graft-versus-leukemia effect: a review of recent results. Bone Marrow Transplant 1994; 14: 201–209.

    CAS  PubMed  Google Scholar 

  52. Okuda T, van Deursen J, Hiebert SW et al. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    Article  CAS  PubMed  Google Scholar 

  53. Shurtleff SA, Meyers S, Hiebert SW et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 1995; 85: 3695–3703.

    Article  CAS  PubMed  Google Scholar 

  54. Le Beau MM, Larson RA, Bitter MA et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophil in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–636.

    Article  CAS  PubMed  Google Scholar 

  55. Weinberg RS, Vlachos A, Najfeld V et al. Disparate lympho-erythroid donor to recipient chimaerism in a beta (0)-thalassaemia bone marrow transplant recipient with red cell indices indicative of apparent full engraftment. Br J Haematol 1997; 99: 61–63.

    Article  CAS  PubMed  Google Scholar 

  56. Andreani M, Manna M, Lucarelli G et al. Persistence of mixed chimerism in patients transplanted for the treatment of thalassemia. Blood 1996; 87: 3494–3499.

    Article  CAS  PubMed  Google Scholar 

  57. Kapelushnik J, Naparstek E, Nagler A et al. Second transplantation using allogeneic peripheral blood stem cells in a beta-thalassaemia major patient featuring stable mixed chimaerism. Br J Haematol 1996; 94: 285–287.

    Article  PubMed  Google Scholar 

  58. Beishuizen A, Verhoeven MA, van Wering ER et al. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 3: 2238–2247.

    Article  Google Scholar 

  59. Norris MD, Kwan E, Haber M et al. Detection of evolving immunoglobulin heavy-chain gene rearrangements in acute lymphoblastic leukemia: a PCR-based assay employing overlapping DJH primers. Leukemia 1995; 9: 1779–1782.

    CAS  PubMed  Google Scholar 

  60. Steward CG, Goulden NJ, Katz F et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994; 83: 1355–1362.

    Article  CAS  PubMed  Google Scholar 

  61. Forbes GM, Fogarty J, Meyer B et al. Intestinal mucosal mononuclear cell chimaerism after sex-mismatched allogeneic bone marrow transplantation. Bone Marrow Transplant 1995; 16: 589–593.

    CAS  PubMed  Google Scholar 

  62. Garcia-Morales R, Esquenazi V, Zucker K et al. An assessment of the effects of cadaver donor bone marrow on kidney allograft recipient blood cell chimerism by a novel technique combining PCR and flow cytometry. Transplantation 1996; 62: 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  63. van Leeuwen JE, van Tol MJ, Joosten AM et al. Persistence of host-type hematopoiesis after allogeneic bone marrow transplantation for leukemia is significantly related to the recipient's age and/or the conditioning regimen, but it is not associated with an increased risk of relapse. Blood 1994; 83: 3059–3067.

    Article  CAS  PubMed  Google Scholar 

  64. Briones J, Urbano-Ispizua A, Lawler M et al. High frequency of donor chimerism after allogeneic transplantation of CD34+-selected peripheral blood cells. Exp Hematol 1998; 26: 415–420.

    CAS  PubMed  Google Scholar 

  65. Lo YM, Noakes L, Roux E et al. Application of a polymorphic Y microsatellite to the detection of post bone marrow transplantation chimaerism. Br J Haematol 1995; 89: 645–649.

    Article  CAS  PubMed  Google Scholar 

  66. Hancock JP, Burgess MF, Goulden NJ et al. Same-day determination of chimaeric status in the immediate period following allogeneic bone marrow transplantation. Br J Haematol 1997; 99: 403–409.

    Article  CAS  PubMed  Google Scholar 

  67. Nakao S, Nakatsumi T, Chuhjo T et al. Analysis of late graft failure after allogeneic bone marrow transplantation: detection of residual host cells using amplification of variable number of tandem repeats loci. Bone Marrow Transplant 1992; 9: 107–111.

    CAS  PubMed  Google Scholar 

  68. Ortega M, Escudero T, Caballin MR et al. Follow-up of chimerism in children with hematological diseases after allogeneic hematopoietic progenitor cell transplants. Bone Marrow Transplant 1999; 24: 81–87.

    Article  CAS  PubMed  Google Scholar 

  69. Palka G, Stuppia L, Di Bartolomeo P et al. FISH detection of mixed chimerism in 33 patients submitted to bone marrow transplantation. Bone Marrow Transplant 1996; 17: 231–236.

    CAS  PubMed  Google Scholar 

  70. Oyama Y, Traynor AE, Barr W et al. Allogeneic stem cell transplantation for autoimmune diseases: nonmyeloablative conditioning regimens. Bone Marrow Transplant 2003; 32 (Suppl 1): S81–S83.

    Article  CAS  PubMed  Google Scholar 

  71. Childs R, Clave E, Contentin N et al. Engraftment kinetics after non-myeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    Article  CAS  PubMed  Google Scholar 

  72. Antin JH, Childs R, Filipovich AH et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem meetings. Biol Blood Marrow Transplant 2001; 7: 473–485.

    Article  CAS  PubMed  Google Scholar 

  73. Bacigalupo A, McCann SR, Lawler M . Recurrence of Philadelphia chromosome-positive leukemia in donor cells after bone marrow transplantation for chronic granulocytic leukemia. Leuk Lymphoma 1993; 10: 419–425.

    Article  PubMed  Google Scholar 

  74. Collins RH, Shpilberg O, Drobyski WR et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  75. Slavin S, Naparstek E, Nagler A et al. Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes. Exp Hematol 1995; 23: 1553–1562.

    CAS  PubMed  Google Scholar 

  76. Drobyski WR, Roth MS, Thibodeau SN et al. Molecular remission occurring after donor leukocyte infusions for the treatment of relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Bone Marrow Transplant 1992; 10: 301–304.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, F., Agarwal, A. & Agrawal, S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 34, 1–12 (2004). https://doi.org/10.1038/sj.bmt.1704525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704525

Keywords

This article is cited by

Search

Quick links