Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endothelial Colonies

In vitro assessment of bone marrow endothelial colonies (CFU-En) in non-Hodgkin's lymphoma patients undergoing peripheral blood stem cell transplantation

Summary:

The distribution and functional characteristics of in vitro bone marrow (BM) endothelial colonies (CFU-En) were studied in 70 non-Hodgkin's lymphoma (NHL) patients in different phases of the disease to explore the association between CFU-En growth and angiogenesis, and between the number of CFU-En and the presence of hematopoietic and mesenchymal progenitor cells. The mean number of CFU-En/106 BM mononuclear cells seen in remission patients was significantly higher than that seen in newly diagnosed patients (P=0.04), and in normal subjects (P=0.008). Patients with low-grade NHL in remission displayed a higher CFU-En value compared with high-grade NHL (P=0.04). In the autograft group (40 patients), a significant reduction of CFU-En number was detected in the first 4–6 months after transplantation. In remission patients, the CFU-En number positively correlated with the incidence of BM colony-forming unit granulocyte–macrophage (CFU-GM) (P=0.013) and CFU-multilineage (CFU-GEMM) hematopoietic colonies (P=0.044). These in vitro data show that CFU-En numbers increase following standard-dose chemotherapy, thus providing a rationale for further investigating the effects of different cytostatic drugs on BM endothelial cells growth and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Prockop DJ . Marrow stromal cells as stem cells for non hematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  Google Scholar 

  2. Majumdar MK, Thiede MA, Mosca JD et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cell. J Cell Physiol 1998; 176: 57–66.

    Article  CAS  Google Scholar 

  3. Rafii S, Shapiro F, Rimarachin J et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 1994; 84: 10–19.

    CAS  PubMed  Google Scholar 

  4. Rafii S, Mohle R, Shapiro F et al. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 1997; 27: 375–378.

    Article  CAS  Google Scholar 

  5. Rood PML, Gerritsen WR, Kramer D et al. Adhesion of hematopoietic progenitor cells to human bone marrow or umbilical vein derived endothelial cell lines: a comparison. Exp Hematol 1999; 27: 1306–1314.

    Article  CAS  Google Scholar 

  6. Salvucci O, Lei Y, Villalba S et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 2002; 99: 2703–2711.

    Article  CAS  Google Scholar 

  7. Shi Q, Rafii S, Hong-De WM et al. Evidence for circulating bone marrow derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  8. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  Google Scholar 

  9. Aguayo A, Kantarjian H, Manshouri et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  10. Hamada K, Oike Y, Takakura N et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculogenesis and hematopoiesis. Blood 2000; 96: 3793–3800.

    CAS  PubMed  Google Scholar 

  11. Vacca A, Ribatti D, Roncali L et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  Google Scholar 

  12. Ribatti D, Vacca A, Nico B et al. Angiogenesis spectrum in the stroma of B-cell non Hodgkin's lymphomas. An immunohistochemical and structural study. Eur J Haematol 1996; 56: 45–53.

    Article  CAS  Google Scholar 

  13. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  14. Perez-Atayde A, Sallan S, Tedrow U et al. Spectrum of tumor angiogenesis in bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Deeg HJ . Marrow stroma in MDS: culprit or bystander? Leuk Res 2002; 26: 687–688.

    Article  Google Scholar 

  16. Dominici M, Campioni D, Lanza F et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia 2001; 15: 171–176.

    Article  CAS  Google Scholar 

  17. Vega F, Medeiros Lj, Lang Wen-Hua et al. The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumors. Br J Hematol 2002; 117: 569–576.

    Article  Google Scholar 

  18. Castro-Malaspina H, Gay RE, Resnick G et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 1980; 56: 289–301.

    CAS  Google Scholar 

  19. Lanza F, Healy L, Sutherland DR . Structural and functional features of the CD34 antigen: an update. J Biol Regul Homeost Agents 2001; 15: 1–13.

    CAS  PubMed  Google Scholar 

  20. Campioni D, Punturieri M, Bardi A et al. In vitro evaluation of bone marrow angiogenesis in myelodysplastic syndromes: a morphological and functional approach. Leuk Res 2003, (in press).

  21. Dias S, Choy M, Alitalo K, Rafii S . Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002; 99: 2179–2184.

    Article  CAS  Google Scholar 

  22. Salven P, Teerenhovi L, Joensuu H . A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin's lymphoma. Blood 1997; 90: 3167–3172.

    CAS  PubMed  Google Scholar 

  23. Bertolini F, Paolucci M, Peccatori F et al. Angiogenic growth factors and endostatin in non Hodgkin's lymphoma. Br J Haematol 1999; 106: 504–509.

    Article  CAS  Google Scholar 

  24. Dominici M, Hofmann TJ, Horwitz EM . Bone marrow mesenchymal cells: biological properties and clinical application. J Biol Regul Homeost Agents 2001; 15: 28–37.

    CAS  PubMed  Google Scholar 

  25. Soligo DA, Lambertenghi Deliliers G, Servida F et al. Haematopoietic abnormalities after autologous stem cell transplantation in lymphoma patients. Bone Marrow Transpl 1998; 21: 15–22.

    Article  CAS  Google Scholar 

  26. Lanza F, Campioni D, Moretti S et al. CD34+ cell subsets and long-term culture colony forming cells (LTC-CFC) evaluated on both autologous and normal bone marrow stroma predict long term hematopoietic engraftment in patients receiving autologous peripheral blood stem cell transplantation. Exp Hematol 2001; 29: 1484–1493.

    Article  CAS  Google Scholar 

  27. Del Canizo C, Lopez N, Caballero D et al. Haematopoietic damage persists 1 year after autologous peripheral blood stem cell transplantation. Bone Marrow Transpl 1999; 23: 901–905.

    Article  CAS  Google Scholar 

  28. D'Arcangelo D, Facchiano F, Barlucchi M et al. Acidosis inhibit endothelial cells apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res 2000; 86: 312–318.

    Article  CAS  Google Scholar 

  29. Bautz F, Rafii S, Kanz L, Mohle R . Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells. Possible role in the hematopoietic microenvironment. Exp Hematol 2000; 28: 700–706.

    Article  CAS  Google Scholar 

  30. Lenton K . VEGFR-2 (KDR/Flk-1). J Biol Regul Homeost Agents 2002; 16: 227–232.

    CAS  PubMed  Google Scholar 

  31. Wang JM, Kumar S, van Agthoven A et al. Irradiation induces up-regulation of E-9 protein (CD105) in human vascular endothelial cells. Int J Cancer 1995; 62: 791–796.

    Article  CAS  Google Scholar 

  32. Huang WQ, Wang QR . Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp Hematol 2001; 29: 12–18.

    Article  CAS  Google Scholar 

  33. Guest I, Utrecht J . Bone marrow stem cell protection from chemotherapy by low-molecular-weight compounds. Exp Hematol 2001; 29: 123–137.

    Article  CAS  Google Scholar 

  34. Shi Q, Rafii S, Wu MH et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  35. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–78.

    Article  CAS  Google Scholar 

  36. Murayama T, Tepper OM, Silver M et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neo vascularization in vivo. Exp Hematol 2002; 30: 967–972.

    Article  CAS  Google Scholar 

  37. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  Google Scholar 

  38. Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularisation. Proc Natl Acad Sci USA 2000; 97: 3422–3427.

    Article  CAS  Google Scholar 

  39. Isner JM, Asahara T . Angiogenesis and vasculogenesis as therapeutic strategies for postnatal vascularization. J Clin Invest 1999; 103: 1231–1234.

    Article  CAS  Google Scholar 

  40. Crosby JR, Kaminski WE, Shatteman G et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87: 728–730.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from CNR/MIUR (Bridge project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Lanza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanza, F., Campioni, D., Punturieri, M. et al. In vitro assessment of bone marrow endothelial colonies (CFU-En) in non-Hodgkin's lymphoma patients undergoing peripheral blood stem cell transplantation. Bone Marrow Transplant 32, 1165–1173 (2003). https://doi.org/10.1038/sj.bmt.1704279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704279

Keywords

Search

Quick links