Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells and Tissue Regeneration

The marrow stem cell: the continuum

Summary:

The marrow hematopoietic stem cell is currently being redefined as to all aspects of its phenotype and its total differentiation capacity. This redefinition now includes its plasticity as to production of nonhematopoietic and hematopoietic cell types, the determinants of its in vivo engraftment potential and its expression of stem cell functional characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Quesenberry PJ, Stewart FM, Becker P et al. In: Orlic D, Brummendorf TH, Sharkis SJ, Kanz L, (eds). Stem Cell Engraftment Strategies in Hematopoietic Stem Cells 2000: Basic and clinical sciences, Third International, Vol. 938; New York Academy of Sciences: New York, 2001; in press.

  2. Rao SS, Peters SO, Crittenden RB et al. Stem cell transplantation in the normal nonmyeloablated host: relationship between cell dose, schedule, and engraftment. Exp Hematol 1997; 25: 114–121.

    CAS  PubMed  Google Scholar 

  3. Stewart FM, Zhong S, Wuu J et al. Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood 1998; 91: 3681–3687.

    CAS  PubMed  Google Scholar 

  4. Micklem HS, Clarke CM, Evans EP, Ford CE . Fate of chromosome-marked mouse bone marrow cells transfused into normal syngeneic recipients. Transplantation 1968; 6: 299.

    Article  CAS  PubMed  Google Scholar 

  5. Brecher G, Ansell JD, Micklem HS et al. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice. Proc Natl Acad Sci USA 1982; 79: 5085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quesenberry PJ, Zhong S, Wang H, Stewart FM . Allogeneic chimerism with low-dose irradiation, antigen presensitization, and costimulator blockade in H-2 mismatched mice. Blood 2001; 97: 557–564.

    Article  CAS  PubMed  Google Scholar 

  7. Lambert JF, Colvin GA, Zhong S et al. H2 mismatched transplantation with repetitive cell infusions and CD40 ligand antibody infusions without myeloablation. Br J Hematol 2002; 119: 155–163.

    Article  Google Scholar 

  8. Kolb HJ, Mittermuller J, Clemm C et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  9. McSweeney PA, Niederwieser D, Shizuru JA et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood, 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  10. Khouri IF, Keating M, Körbling M et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies. J Clin Oncol 1998; 16: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  11. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood, 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  12. Ballen K, Becker P, Emmons R et al. Low dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood 2002; 100: 442–450.

    Article  CAS  PubMed  Google Scholar 

  13. Colvin G, Lambert JF, Lum L et al. Universal immunotherapeutic approach for patients with refractory malignancies: HLA-haploidentical transplants in 100 cGy-conditioned hosts. Exp Hematol 2002; 30: 110 (abstract).

    Google Scholar 

  14. Kittler EL, Peters SO, Crittenden RB et al. Cytokine-facilitated transduction leads to low-level engraftment in non-ablated hosts. Blood, 1997; 90: 865–872.

    CAS  PubMed  Google Scholar 

  15. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Exp Hematol 1995; 23: 461–469.

    CAS  PubMed  Google Scholar 

  16. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3, interleukin-6, interleukin-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  17. Reddy GP, Tiarks CY, Pang L et al. Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood 1997; 90: 2293–2299.

    CAS  PubMed  Google Scholar 

  18. Habibian HK, Peters SO, Hsieh CC et al. The fluctuating phenotype of the lympho-hematopoietic stem cell with cell cycle transit. J Exp Med 1998; 188: 393–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambert JF, Liu M, Baskaran NV et al. Purified hematopoietic stem cells show a major shift of gene expression through cell cycle that coincides with an engraftment nadir. Exp Hematol 2002; 30: 118 (abstract).

    Google Scholar 

  20. Becker PS, Nilsson SK, Li Z et al. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp Hematol 1999; 27: 533–541.

    Article  CAS  PubMed  Google Scholar 

  21. Berrios VM, Dooner GJ, Nowakowski G et al. The molecular basis for the cytokine-induced defect in horning and engraftment of hematopoietic stem cells. Exp Hematol 2001; 29: 1326–1335.

    Article  CAS  PubMed  Google Scholar 

  22. Frimberger A, McAuliffe CI, Werme KA et al. The fleet feet of hematopoietic stem cells: rapid motility, interaction and proteopedia. Br J Haematol 2001; 112: 644–654.

    Article  CAS  PubMed  Google Scholar 

  23. Colvin G, Lambert JF, McAuliffe C, Quesenberry PJ . Stem/progenitor cell inversions: the Chiaroscuro stem cell model of hematopoiesis. Exp Hematol 2002; 30: 128 (abstract).

    Google Scholar 

  24. Cerny J, Dooner M, McAuliffe C et al. Homing of purified murine lymphohematopoietic stem cells: a cytokine-induced defect. J Hematother & Stem Cell Res 2002; 11: 913–922.

    Article  CAS  Google Scholar 

  25. Nilsson SK, Dooner MS, Weier HU et al. Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med 1999; 189: 729–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abedi M, Colvin G, Lambert JF et al. Green fluorescent protein (GFP) positive marrow trafficking to injured murine liver. Exp Hematol 2002; 30(1): 128 (abstract).

    Google Scholar 

  27. Abedi M, Badiavas E, Lambert JF et al. Trafficking and transdifferentiation of bone marrow cells in a skin injury model. Exp Hematol 2002; 30: 47 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by: RO1 DK27424-18, PO1 DK50222-02, PO1 CA68426-01, RO1 DK61858-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesenberry, P., Colvin, G., Abedi, M. et al. The marrow stem cell: the continuum. Bone Marrow Transplant 32 (Suppl 1), S19–S22 (2003). https://doi.org/10.1038/sj.bmt.1703938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703938

Keywords

Search

Quick links