Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Alemtuzumab (Campath-1H) for treatment of lymphoid malignancies in the age of nonmyeloablative conditioning?

Abstract

The anti-CD52 (Campath-1) monoclonal antibodies (Mabs) have a substantial history of use for controlling graft-versus-host disease in allogeneic bone marrow transplantation. Now, with the availability of a humanised form, alemtuzumab (Campath-1H), and the demonstration that this agent can reduce the tumour burden in B-CLL, a new niche may be found – as a potentially curative agent in which its tumour purging ability in vivo combines with its role as a conditioning agent in nonmyeloablative transplantation. Review of the literature shows that alemtuzumab has unique advantages as a method of depleting malignant lymphocytes, including those in patients resistant to conventional chemotherapy. Alemtuzumab can also be used in BMT for depletion of normal T and B lymphocytes of both the recipient and donor for prevention of graft rejection and GVHD. It allows good stem cell recovery with resultant rapid engraftment, has a low risk of EBV-triggered secondary malignancy and does not interfere with blood stem cell mobilisation. As a method of eliminating the malignant clone in B-CLL, alemtuzumab has shown remarkable efficacy in heavily pre-treated patients, a number of whom have progressed to autologous or allogeneic transplantation. Efficacy data are shown within the context of other transplantation data for B-CLL. These results indicate that the combination of tumour-depleting and immunosuppressive properties of alemtuzumab should be explored, with the hope of providing improved treatment options for elderly patients with advanced B-CLL or indolent lymphoma whose prognosis is too poor currently to allow treatment with traditional regimens of high-dose myeloablative chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weiden PL, Sullivan KM, Fluornoy N et al. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation New Engl J Med 1981 304: 1529 1533

    Article  CAS  PubMed  Google Scholar 

  2. Horowitz MM, Gale RP, Sondel PM et al. Graft-versus-leukemia reactions after bone marrow transplantation Blood 1990 75: 555 562

    CAS  PubMed  Google Scholar 

  3. Waldmann H, Polliak A, Hale G et al. Elimination of graft-versus-host disease by in vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (CAMPATH-1) Lancet 1984 2: 483 486

    Article  CAS  PubMed  Google Scholar 

  4. Slavin S, Waldmann H, Or R et al. Prevention of graft-vs-host disease in allogeneic transplantation for leukemia by T-cell depletion in vitro prior to transplantation Transplant Proc 1985 17: 465 467

    Google Scholar 

  5. Cobbold SP, Martin G, Qin S, Waldmann H . Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance Nature 1986 323: 164 166

    Article  CAS  PubMed  Google Scholar 

  6. Hale G, Waldmann H . Control of graft-versus-host disease and graft rejection by T cell depletion of donor and recipient with Campath-1 antibodies. Results of matched sibling transplants for malignant diseases Bone Marrow Transplant 1994 13: 597 611

    CAS  PubMed  Google Scholar 

  7. Slavin S, Strober S, Fuks Z, Kaplan HS . Long-term survival of skin allografts in mice treated with fractionated total lymphoid irradiation Science 1976 193: 1252 1254

    Article  CAS  PubMed  Google Scholar 

  8. Slavin S, Naparstek E, Aker M et al. The use of total lymphoid irradiation (TLI) for prevention of rejection of T-lymphocyte depleted bone marrow allografts in non-malignant hematological disorders Transplant Proc 1989 21: 3053 3054

    CAS  PubMed  Google Scholar 

  9. Plunkett W, Saunders PP . Metabolism and action of purine nucleoside analogs Pharmacol Ther 1991 49: 239 268

    Article  CAS  PubMed  Google Scholar 

  10. Williamson L, Wimperis J, Wood M, Woodcock B . Fludarabine treatment and transfusion-associated graft-versus-host disease Lancet 1996 348: 4723

    Article  Google Scholar 

  11. Hale G . The CD52 antigen and development of the CAMPATH antibodies Cytotherapy 2001 3: 137 144

    Article  CAS  PubMed  Google Scholar 

  12. Gilleece MH, Dexter TM . Effect of Campath-1H antibody on human hematopoietic progenitors in vitro Blood 1993 82: 807 812

    CAS  PubMed  Google Scholar 

  13. Riechmann L, Clark M, Waldmann H, Winter G . Reshaping human antibodies for therapy Nature 1988 332: 323 327

    Article  CAS  PubMed  Google Scholar 

  14. Keating MJ, Flinn I, Vinay J et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study Blood 2002 99: 3554 3561

    Article  CAS  PubMed  Google Scholar 

  15. Dearden CE, Matutes E, Cazin B et al. High remission rate in T-cell prolymphocytic leukaemia treated with CAMPATH-1H Blood 2001 98: 1721 1726

    Article  CAS  PubMed  Google Scholar 

  16. Lundin J, Kimby E, Bjorkholm M et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL) Blood 2002 100: 768 773

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy B, Rawstron A, Carter C et al. Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia Blood 2002 99: 2245 2247

    Article  CAS  PubMed  Google Scholar 

  18. Faderl S, Thomas DA, O'Brien S et al. An exploratory study of the combination of monoclonal antibodies CAMPATH-1H and Rituximab in the treatment of CD52 and CD20-positive chronic lymphocytic disorders Blood 2001 98: 365A

    Google Scholar 

  19. Lundin J, Osterborg A, Brittinger G et al. CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin's lymphomas. A phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin's Lympoma J Clin Oncol 1998 16: 3257 3263

    Article  CAS  PubMed  Google Scholar 

  20. Neudorf SM, Rybka W, Ball E et al. The use of counterflow centrifugal elutriation for the depletion of T cells from unrelated donor bone marrow J Hematother 1997 6: 351 359

    Article  CAS  PubMed  Google Scholar 

  21. Cornelissen JJ, Fibbe WE, Schattenberg AV et al. A retrospective Dutch study comparing T cell-depleted allogeneic blood stem cell transplantation vs T cell-depleted allogeneic bone marrow transplantation Bone Marrow Transplant 1998 21: (Suppl. 3) S66 S70

    PubMed  Google Scholar 

  22. Weiss L, Margel S, Slavin S . Depletion of human lymphocytes from peripheral blood and bone marrow by affinity ligands conjugated to agarose-polyacrolein microsphere beads Appl Biochem Biotechnol 1986 13: 87 96

    Article  CAS  PubMed  Google Scholar 

  23. Frame JN, Collins NH, Cartagena T et al. T cell depletion of human bone marrow. Comparison of Campath-1 plus complement, anti-T cell ricin A chain immunotoxin, and soybean agglutinin alone or in combination with sheep erythrocytes or immunomagnetic beads Transplantation 1989 47: 984 988

    Article  CAS  PubMed  Google Scholar 

  24. Jeong DC, Han CW, Jin JY et al. Effectiveness of rotor off fraction in allogeneic murine bone marrow transplantation with complete disparity of major histocompatibility Exp Hematol 1999 27: 1219 1225

    Article  CAS  PubMed  Google Scholar 

  25. Schattenberg A, Preijers F, Mensink E et al. Survival in first or second remission after lymphocyte-depleted transplantation for Philadelphia chromosome-positive CML in first chronic phase Bone Marrow Transplant 1997 19: 1205 1212

    Article  CAS  PubMed  Google Scholar 

  26. Schaap N, Schattenberg A, Bar B et al. Outcome of transplantation for standard-risk leukaemia with grafts depleted of lymphocytes after conditioning with an intensified regimen Br J Haematol 1997 98: 750 759

    Article  CAS  PubMed  Google Scholar 

  27. O'Donnell PV, Jones RJ, Vogelsang GB et al. CD34+ stem cell augmentation of elutriated allogeneic bone marrow grafts: results of a phase II clinical trial of engraftment and graft-versus-host disease prophylaxis in high-risk hematologic malignancies Bone Marrow Transplant 1998 22: 947 955

    Article  CAS  PubMed  Google Scholar 

  28. Noga SJ, Seber A, Davis JM et al. CD34 augmentation improves allogeneic T cell-depleted bone marrow engraftment J Hematother 1998 7: 151 157

    Article  CAS  PubMed  Google Scholar 

  29. Clarke E, Potter MN, Oakhill A et al. A laboratory comparison of T cell depletion by CD34+ cell immunoaffinity selection and in vitro Campath-1M treatment: clinical implications for bone marrow transplantation and donor leukocyte therapy Bone Marrow Transplant 1997 20: 599 605

    Article  CAS  PubMed  Google Scholar 

  30. Dao MA, Nolta JA . CD34: To select or not to select? That is the question Leukemia 2000 14: 773 776

    Article  CAS  PubMed  Google Scholar 

  31. Zanjani ED, Almeida-Porada G, Livingston AG et al. Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells Exp Hematol 1998 26: 353 360

    CAS  PubMed  Google Scholar 

  32. Zanjani ED, Almeida-Porada G, Livingston AG et al. Engraftment and multilineage expression of human bone marrow CD34 cells in vivo Ann NY Acad Sci 1999 872: 220 222

    Article  CAS  PubMed  Google Scholar 

  33. Hale G, Zhang MJ, Bunjes D et al. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection Blood 1998 92: 4581 4590

    CAS  PubMed  Google Scholar 

  34. Jacobs P, Wood L, Fullard L et al. T cell depletion by exposure to Campath-1G in vitro prevents graft-versus-host disease Bone Marrow Transplant 1994 13: 763 769

    CAS  PubMed  Google Scholar 

  35. Hale G, Jacobs P, Wood L et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells Bone Marrow Transplant 2000 26: 69 76

    Article  CAS  PubMed  Google Scholar 

  36. Rebello P, Cwynarski K, Varughese M et al. Phamacokinetics of Campath-1H in bone marrow transplant patients Cytotherapy 2001 3: 261 267

    Article  CAS  PubMed  Google Scholar 

  37. Kottaridis PD, Milligan DW, Chopra R et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation Blood 2000 96: 2419 2425

    CAS  PubMed  Google Scholar 

  38. Curtis RE, Travis LB, Rowlings PA et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study Blood 1999 94: 2208 2216

    CAS  PubMed  Google Scholar 

  39. Hale G, Waldmann H . Risks of developing Epstein–Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH users Blood 1998 91: 3079 3083

    CAS  PubMed  Google Scholar 

  40. Hertenstein B, Hampl W, Bunjes D et al. In vivo/ex vivo T cell depletion for GVHD prophylaxis influences onset and course of active cytomegalovirus infection and disease after BMT Bone Marrow Transplant 1995 15: 387 393

    CAS  PubMed  Google Scholar 

  41. Chakrabarti S, Mackinnon S, Chopra R et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of CAMPATH-1H in delaying immune reconstitution but limiting transplant-related mortality Blood 2002 99: 4357 4363

    Article  CAS  PubMed  Google Scholar 

  42. D'Sa SP, Peggs KS, Thuraisundaram D et al. CAMPATH-1H-containing nonmyeloablative allogeneic stem cell transplantation for myeloma results in delayed T cell reconstitution and a high incidence of viral infections, but low infection-related mortality Blood 2001 98: 203a (Abstr. 847)

    Google Scholar 

  43. Potter M, Grace S, Ethell M et al. High rate of CMV reactivation (but not disease) in recipient of allogeneic transplants conditioned with CAMPATH-1H Bone Marrow Transplant 2000 25: (Suppl. 1) 135

    Article  Google Scholar 

  44. Chakrabarti S, Collingham KE, Marshall T et al. Respiratory virus infections in adult T cell-depleted transplant recipients: the role of cellular immunity Transplantation 2001 72: 1460 1463

    Article  CAS  PubMed  Google Scholar 

  45. Davison GM, Novitzky N, Kline A et al. Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells Transplantation 2000 69: 1341 1347

    Article  CAS  PubMed  Google Scholar 

  46. Akashi K, Kondo M, Weissman IL . Role of interleukin-7 in T-cell development from hematopoietic stem cells Immunol Rev 1998 165: 13 28

    Article  CAS  PubMed  Google Scholar 

  47. Fry TJ, Christensen BL, Komschlies KL et al. Interleukin-7 restores immunity in athymic T-cell-depleted hosts Blood 2001 97: 1525 1533

    Article  CAS  PubMed  Google Scholar 

  48. Grigg A, Bardy P, Byron K et al. Fludarabine-based non-myeloablative chemotherapy followed by infusion of HLA-identical stem cells for relapsed leukaemia and lymphoma Bone Marrow Transplant 1999 23: 107 110

    Article  CAS  PubMed  Google Scholar 

  49. Giralt S, Estey E, Albitar M et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy Blood 1997 89: 4531 4536

    CAS  PubMed  Google Scholar 

  50. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases Blood 1998 91: 756 763

    CAS  PubMed  Google Scholar 

  51. Khouri IF, Keating M, Korbling M et al. Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies J Clin Oncol 1998 16: 2817 2824

    Article  CAS  PubMed  Google Scholar 

  52. Champlin R, Khouri I, Kornblau S et al. Allogeneic hematopoietic transplantation as adoptive immunotherapy. Induction of graft-versus-malignancy as primary therapy Hematol Oncol Clin North Am 1999 13: 1041 1058

    Article  CAS  PubMed  Google Scholar 

  53. Carella AM, Champlin R, Slavin S et al. Mini-allografts: ongoing trials in humans (editorial) Bone Marrow Transplant 2000 25: 345 350

    Article  CAS  PubMed  Google Scholar 

  54. Nagler A, Slavin S ., Varadi G et al. Allogeneic peripheral blood stem cell transplantation using a fludarabine-based low intensity conditioning regimen for malignant lymphoma Bone Marrow Transplant 2000 25: 1021 1028

    Article  CAS  PubMed  Google Scholar 

  55. Cull GM, Haynes AP, Byrne JL et al. Preliminary experience of allogeneic stem cell transplantation for lymphoproliferative disorders using BEAM-CAMPATH conditioning: an effective regimen with low procedure-related toxicity Br J Haematol 2000 108: 754 760

    Article  CAS  PubMed  Google Scholar 

  56. Flinn IW, Vogelsang G . Bone marrow transplantation for chronic lymphocytic leukemia Semin Oncol 1998 25: 60 64

    CAS  PubMed  Google Scholar 

  57. Dreger P, von Neuhoff N, Kuse R et al. Early stem cell transplantation for chronic lymphocytic leukaemia: a chance for cure? Br J Cancer 1998 77: 2291 2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jindra P, Koza V, Fiser J et al. Autologous CD34+ cells transplantation after FAMP treatment in a patient with CLL and persisting AIHA: complete remission of lymphoma with control of autoimmune complications Bone Marrow Transplant 1999 24: 215 217

    Article  CAS  PubMed  Google Scholar 

  59. Itala M, Pelliniemi TT, Rajamaki A, Remes K . Autologous blood cell transplantation in B-CLL: response to chemotherapy prior to mobilization predicts the stem cell yield Bone Marrow Transplant 1997 19: 647 651

    Article  CAS  PubMed  Google Scholar 

  60. Scime R, Indovina A, Santoro A et al. PBSC mobilization, collection and positive selection in patients with chronic lymphocytic leukemia Bone Marrow Transplant 1998 22: 1159 1165

    Article  CAS  PubMed  Google Scholar 

  61. Schey S, Ahsan G, Jones R . Dose intensification and molecular responses in patients with chronic lymphocytic leukaemia: a phase II single centre study Bone Marrow Transplant 1999 24: 989 993

    Article  CAS  PubMed  Google Scholar 

  62. Dyer MJ, Kelsey SM, Mackay HJ et al. In vivo ‘purging’ of residual disease in CLL with Campath-1H Br J Haematol 1997 97: 669 672

    Article  CAS  PubMed  Google Scholar 

  63. Kennedy S, Rawstron A, Evans P et al. Campath-1H therapy in 29 patients with refractory CLL: ‘true’ complete remission is an attainable goal Blood 1999 94: (Suppl. 1) 603a (Abstr. 2683)

    Google Scholar 

  64. Michallet M, Archimbaud E, Bandini G et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry Ann Intern Med 1996 124: 311 315

    Article  CAS  PubMed  Google Scholar 

  65. Khouri IF, Keating MJ, Vriesendorp HM et al. Autologous and allogeneic bone marrow transplantation for chronic lymphocytic leukemia: preliminary results J Clin Oncol 1994 12: 748 758

    Article  CAS  PubMed  Google Scholar 

  66. Pavletic ZS, Arrowsmith ER, Bierman PJ et al. Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia Bone Marrow Transplant 2000 25: 717 722

    Article  CAS  PubMed  Google Scholar 

  67. Provan D, Bartlett-Pandite L, Zwicky C et al. Eradication of polymerase chain reaction-detectable chronic lymphocytic leukemia cells is associated with improved outcome after bone marrow transplantation Blood 1996 88: 2228 2235

    CAS  PubMed  Google Scholar 

  68. Lush RJ, Haynes AP, Byrne JL et al. Allogeneic stem-cell transplantation for lymphoproliferative disorders using BEAM-CAMPAH (+/−fludarabine) conditioning combined with post-transplant donor-lymphocyte infusion Cytotherapy 2001 3: 203 210

    Article  CAS  PubMed  Google Scholar 

  69. Carrum G, Przepiorka D, Popat U et al. Submyeloablative conditioning regimens using anti-lymphocyte antibodies for allogeneic stem cell transplantation Blood 2001 98: 184a (Abstr. 775)

    Google Scholar 

  70. Rizzieri DA, Long GD, Vredenburgh JJ et al. Non-myeloablative allogeneic transplantation using T depleted matched sibling peripheral blood stem cells Blood 2001 98: 420a (Abstr. 1764)

    Article  Google Scholar 

  71. Rizzieri DA, Long GD, Vredenburgh JJ et al. Non-myeloablative transplantation using CAMPATH 1H for T depletion of mismatched, related donor peripheral blood stem cells Blood 2001 98: 669a (Abstr. 2805)

    Article  Google Scholar 

  72. Rabinowe SN, Soiffer RJ, Gribben JG et al. Autologous and allogeneic bone marrow transplantation for poor prognosis patients with B-cell chronic lymphocytic leukemia Blood 1993 82: 1366 1376

    CAS  PubMed  Google Scholar 

  73. Bandini G, Michallet M, Rosti G, Tura S . Bone marrow transplantation for chronic lymphocytic leukemia Bone Marrow Transplant 1991 7: 251 253

    CAS  PubMed  Google Scholar 

  74. Toze CL, Shepherd JD, Connors JM et al. Allograftingfor indolent lymphoid neoplasms Ann Oncol 1994 12: 748 758

    Google Scholar 

Download references

Acknowledgements

We are grateful for the assistance of Janet Stephenson and Parthenon Medical Communications in the drafting of this review, with funding from Schering AG.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, G., Slavin, S., Goldman, J. et al. Alemtuzumab (Campath-1H) for treatment of lymphoid malignancies in the age of nonmyeloablative conditioning?. Bone Marrow Transplant 30, 797–804 (2002). https://doi.org/10.1038/sj.bmt.1703733

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703733

Keywords

This article is cited by

Search

Quick links