Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation

Abstract

The ability to culture CD34+ stem cells, while maintaining their pluripotency, is essential for manipulations such as gene transfection for therapeutic trials. Human peripheral blood (PB) CD34+ cells (90% purity) were cultured for up to 4 days in serum-free culture medium supplemented with thrombopoietin (TPO), stem cell factor (SCF), Flt-3 ligand (Flt-3L), with or without PIXY321 (IL-3/GM-CSF fusion protein) and human serum. The CD34 mean fluorescence intensity (MFI) and cell cycle status were evaluated daily using flow cytometry and hypotonic propidium iodide. Prior to culture (day 0), 97.0 ± 0.9%, 1.9 ± 0.3% and 1.0 ± 0.6% of the selected CD34+ cells were in G0–G1, S-phase, or G2–M, respectively. After 2–4 days in culture with TPO/SCF/Flt-3L, there was an increase in the percent of cells in S-phase to 26.4 ± 0.1% without significant loss of CD34 MFI. The addition of PIXY321 increased the percentage of CD34+ cells in S-phase to 36.3 ± 4.0%, but the CD34 MFI and numbers of CFU (colony-forming units) were significantly decreased at day 3 when cultured with PIXY321 or various recombinant cytokine combinations that included IL-3 and IL-6. There is an increase from day 0 to day 4 in the percentages of CD34+ with CD38, HLA-DR, and c-kitlow, but not Thy-1+ cells. Electroporation with EGFP reporter gene showed that 1–2 days of pre-stimulation in X-VIVO 10 supplemented with TPO/SCF/Flt-3L was necessary and sufficient for efficient transfection. Flow cytometry analysis demonstrated that 22% of the viable cells are CD34+/EGFP+ 48 h post electroporation. The introduced reporter gene appears to be stable as determined by EGFP+/LTC-IC (long-term colony-initiating cells), at 30–40 positive colonies (16 ± 7%) per 1 × 105 electroporated CD34+ cells. Bone Marrow Transplantation (2001) 27, 1201–1209.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bertolini F, Corsini C, Lazzari L et al. Gene transfer-mediated generation of drug-resistant hemopoiesis Leuk Lymphoma 1996 21: 17–23

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava A . Parvovirus-based vectors for human gene therapy Blood Cells 1994 20: 531–536; discussion 536–538

    Google Scholar 

  3. Fruehauf S, Boesen JJ, Breems DA et al. Retroviral transfer of the multidrug resistance-1 gene into lineage-committed and primitive hemopoietic cells Stem Cells 1995 13: (Suppl. 3) 93–99

    Article  PubMed  Google Scholar 

  4. Baum C, Eckert HG, Stockschlader M et al. Improved retroviral vectors for hematopoietic stem cell protection and in vivo selection J Hematother 1996 5: 323–329

    Article  CAS  PubMed  Google Scholar 

  5. Frey BM, Hackett NR, Bergelson JM et al. High-efficiency gene transfer into ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors Blood 1998 91: 2781–2792

    CAS  PubMed  Google Scholar 

  6. Wu MH, Liebowitz DN, Smith SL et al. Efficient expression of foreign genes in human CD34+ hematopietic precursor cells using electroporation Gene Therapy 2001 8: 384–390

    Article  CAS  PubMed  Google Scholar 

  7. Toneguzzo F, Hayday AC, Keating A . Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells Mol Cell Biol 1986 6: 703–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Toneguzzo F, Keating A . Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer Proc Natl Acad Sci USA 1986 83: 3496–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toneguzzo F, Keating A, Glynn S et al. Electric field-mediated gene transfer: characterization of DNA transfer and patterns of integration in lymphoid cells Nucleic Acids Res 1988 16: 5515–5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keating A, Toneguzzo F . Gene transfer by electroporation: a model for gene therapy Prog Clin Biol Res 1990 333: 491–498

    CAS  PubMed  Google Scholar 

  11. Takahashi M, Furukawa T, Nikkuni K et al. Efficient introduction of a gene into hematopoietic cells in S-phase by electroporation Exp Hematol 1991 19: 343–346

    CAS  PubMed  Google Scholar 

  12. Takahashi M, Furukawa T, Tanaka I et al. Gene introduction into granulocyte–macrophage progenitor cells by electroporation: the relationship between introduction efficiency and the proportion of cells in S-phase Leukemia Res 1992 16: 761–767

    Article  CAS  Google Scholar 

  13. Yorifuji T, Tsuruta S, Mikawa H . The effect of cell synchronization on the efficiency of stable gene transfer by electroporation FEBS Lett 1989 245: 201–203

    Article  CAS  PubMed  Google Scholar 

  14. Van Tendeloo VF, Snoeck HW, Lardon F et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells Gene Therapy 1998 5: 700–707

    Article  CAS  PubMed  Google Scholar 

  15. Van Tendeloo VF, Willems R, Ponsaerts P et al. High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery Gene Therapy 2000 7: 1431–1437

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia M, Bonnet D, Kapp U et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture J Exp Med 1997 186: 619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tisdale JF, Hanazono Y, Sellers SE et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability Blood 1998 92: 1131–1141

    CAS  PubMed  Google Scholar 

  18. Scheding S, Kratz-Albers K, Meister B et al. Ex vivo expansion of hematopoietic progenitor cells for clinical use Semin Hematol 1998 35: 232–240

    CAS  PubMed  Google Scholar 

  19. von Kalle C, Glimm H, Schulz G et al. New developments in hematopoietic stem cell expansion Curr Opin Hematol 1998 5: 79–86

    Article  CAS  PubMed  Google Scholar 

  20. Brugger W, Kanz L . Ex vivo expansion of hematopoietic precursor cells Curr Opin Hematol 1996 3: 235–240

    Article  CAS  PubMed  Google Scholar 

  21. Ogawa M . Differentiation and proliferation of hematopoietic stem cells Blood 1993 81: 2844–2853

    CAS  PubMed  Google Scholar 

  22. Gothot A, Pyatt R, McMahel J et al. Assessment of proliferative and colony-forming capacity after successive in vitro divisions of single human CD34+ cells initially isolated in G0 Exp Hematol 1998 26: 562–570

    CAS  PubMed  Google Scholar 

  23. David S, Biancone L, Caserta C et al. Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells Nephrol Dial Transplant 1997 12: 51–56

    Article  CAS  PubMed  Google Scholar 

  24. Birkmann J, Oez S, Smetak M et al. Effects of recombinant human thrombopoietin alone and in combination with erythropoietin and early-acting cytokines on human mobilized purified CD34+ progenitor cells cultured in serum-depleted medium Stem Cells 1997 15: 18–32

    Article  CAS  PubMed  Google Scholar 

  25. Petzer AL, Zandstra PW, Piret JM et al. Differential cytokine effects on primitive (CD34+CD38−) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin J Exp Med 1996 183: 2551–2558

    Article  CAS  PubMed  Google Scholar 

  26. Brugger W, Mocklin W, Heimfeld S et al. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin Blood 1993 81: 2579–2584

    CAS  PubMed  Google Scholar 

  27. McKenna HJ, de Vries P, Brasel K et al. Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells Blood 1995 86: 3413–3420

    CAS  PubMed  Google Scholar 

  28. Sui X, Tsuji K, Tanaka R et al. gp130 and c-Kit signalings synergize for ex vivo expansion of human primitive hemopoietic progenitor cells Proc Natl Acad Sci USA 1995 92: 2859–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bertolini F, Soligo D, Lazzari L et al. The effect of interleukin-12 in ex-vivo expansion of human haemopoietic progenitors Br J Haematol 1995 90: 935–938

    Article  CAS  PubMed  Google Scholar 

  30. Garbe A, Spyridonidis A, Mobest D et al. Transforming growth factor-beta 1 delays formation of granulocyte–macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haemopoietic progenitor cells Br J Haematol 1997 99: 951–958

    Article  CAS  PubMed  Google Scholar 

  31. Kobari L, Giarratana MC, Poloni A et al. Flt 3 ligand, MGDF, Epo and G-CSF enhance ex vivo expansion of hematopoietic cell compartments in the presence of SCF, IL-3 and IL-6 Bone Marrow Transplant 1998 21: 759–767

    Article  CAS  PubMed  Google Scholar 

  32. Ihle JN . Interleukin-3 and hematopoiesis Chem Immunol 1992 51: 65–106

    CAS  PubMed  Google Scholar 

  33. Gabbianelli M, Pelosi E, Montesoro E et al. Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors Blood 1995 86: 1661–1670

    CAS  PubMed  Google Scholar 

  34. Young JC, Varma A, DiGiusto D et al. Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture Blood 1996 87: 545–556

    CAS  PubMed  Google Scholar 

  35. Dao MA, Hashino K, Kato I et al. Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells Blood 1998 92: 4612–4621

    CAS  PubMed  Google Scholar 

  36. Breems DA, Blokland EA, Siebel KE et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells Blood 1998 91: 111–117

    CAS  PubMed  Google Scholar 

  37. Bhatia R, McGlave PB, Miller JS et al. A clinically suitable ex vivo expansion culture system for LTC-IC and CFC using stroma-conditioned medium Exp Hematol 1997 25: 980–991

    CAS  PubMed  Google Scholar 

  38. Brandt JE, Galy AH, Luens KM et al. Bone marrow repopulation by human marrow stem cells after long-term expansion culture on a porcine endothelial cell line Exp Hematol 1998 26: 950–961

    CAS  PubMed  Google Scholar 

  39. Ramsfjell V, Borge OJ, Cui L et al. Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38−) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-beta and TNF-alpha J Immunol 1997 158: 5169–5177

    CAS  PubMed  Google Scholar 

  40. Goff JP, Shields DS, Greenberger JS . Influence of cytokines on the growth kinetics and immunophenotype of daughter cells resulting from the first division of single CD34(+)Thy-1(+)lin− cells Blood 1998 92: 4098–4107

    CAS  PubMed  Google Scholar 

  41. Haylock DN, Horsfall MJ, Dowse TL et al. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand Blood 1997 90: 2260–2272

    CAS  PubMed  Google Scholar 

  42. Dao MA, Nolta JA . Inclusion of IL-3 during retrovirally-mediated transduction on stromal support does not increase the extent of gene transfer into long-term engrafting human hematopoietic progenitors Cytokines Cell Mol Ther 1997 3: 81–89

    CAS  PubMed  Google Scholar 

  43. Ohmizono Y, Sakabe H, Kimura T et al. Thrombopoietin augments ex vivo expansion of human cord blood-derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand Leukemia 1997 11: 524–530

    Article  CAS  PubMed  Google Scholar 

  44. Borge OJ, Ramsfjell V, Cui L et al. Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38− bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin Blood 1997 90: 2282–2292

    CAS  PubMed  Google Scholar 

  45. Kobayashi M, Laver JH, Kato T et al. Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3 Blood 1996 88: 429–436

    CAS  PubMed  Google Scholar 

  46. Murray LJ, Young JC, Osborne LJ et al. Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division Exp Hematol 1999 27: 1019–1028

    Article  CAS  PubMed  Google Scholar 

  47. Dooley DC, Xiao M, Oppenlander BK et al. Flt3 ligand enhances the yield of primitive cells after ex vivo cultivation of CD34+ CD38dim cells and CD34+ CD38dim CD33dim HLA-DR+ cells Blood 1997 90: 3903–3913

    CAS  PubMed  Google Scholar 

  48. Petzer AL, Hogge DE, Landsdorp PM et al. Self-renewal of primitive human hematopoietic cells (long-term culture-initiating cells) in vitro and their expansion in defined medium Proc Natl Acad Sci USA 1996 93: 1470–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zandstra PW, Conneally E, Petzer AL et al. Cytokine manipulation of primitive human hematopoietic cell self-renewal Proc Natl Acad Sci USA 1997 94: 4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li CL, Johnson GR . Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells Blood 1994 84: 408–414

    CAS  PubMed  Google Scholar 

  51. Leary AG, Zeng HQ, Clark SC et al. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors Proc Natl Acad Sci USA 1992 89: 4013–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piacibello W, Sanavio F, Garetto L et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood Blood 1997 89: 2644–2653

    CAS  PubMed  Google Scholar 

  53. Tjonnfjord GE, Steen R, Veiby OP et al. Lineage commitment of CD34+ human hematopoietic progenitor cells Exp Hematol 1996 24: 875–882

    CAS  PubMed  Google Scholar 

  54. Tjonnfjord GE, Steen R, Evensen SA et al. Characterization of CD34+ peripheral blood cells from healthy adults mobilized by recombinant human granulocyte colony-stimulating factor Blood 1994 84: 2795–2801

    CAS  PubMed  Google Scholar 

  55. Knudsen LM, Rasmussen T, Jensen L et al. Reduced bone marrow stem cell pool and progenitor mobilisation in multiple myeloma after melphalan treatment Med Oncol 1999 16: 245–254

    Article  CAS  PubMed  Google Scholar 

  56. Osawa M, Hanada K, Hamada H et al. Long-termlymphohematopoietic reconstitution by a single CD34− low/negative hematopoietic stem cell Science 1996 273: 242–245

    Article  CAS  PubMed  Google Scholar 

  57. Conneally E, Cashman J, Petzer A et al. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice Proc Natl Acad Sci USA 1997 94: 9836–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dorrell C, Gan OI, Pereira DS et al. Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function Blood 2000 95: 102–110

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by United States Public Health Service grants CA57725 (MED) and CA71627 (MED), and the breast cancer planning grant awarded to University of Chicago Cancer Center CA661324 (MED). We would like to thank Susan Barker and Kahadijah James from the Apheresis Facility and Kristi Hollingsworth and Janine Kobar from the Stem Cell Cryolab at the University of Chicago for providing the apheresis blood products used in these studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Smith, S., Danet, G. et al. Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation. Bone Marrow Transplant 27, 1201–1209 (2001). https://doi.org/10.1038/sj.bmt.1703054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703054

Keywords

This article is cited by

Search

Quick links