Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Predictive factors for long-term engraftment of autologous blood stem cells

Abstract

Data from 170 consecutive patients aged 19–66 years (median age 46 years) who underwent unmanipulated autologous blood stem cell transplant (ASCT) were analyzed to determine if total CD34+ cells/kg infused, CD34+ subsets (CD34+41+, CD34+90+, CD34+33, CD34+38, CD34+38DR), peripheral blood CD34+ cell (PBCD34+) count on first apheresis day, or various clinical factors were associated with low blood counts 6 months post ASCT. Thirty-four patients were excluded from analysis either because of death (n = 17) or re-induction chemotherapy prior to 6 months post ASCT (n = 13), or because of lack of follow-up data (n = 4). Of the remaining 136 patients, 46% had low WBC (<4 × 109/l), 41% low platelets (<150 × 109/l), and 34% low hemoglobin (<120 g/l) at a median of 6 months following ASCT. By Spearman's rank correlation, both the total CD34+ cell dose/kg and the PBCD34+ count correlated with 6 month blood counts better than any subset of CD34+ cells or any clinical factor. The PBCD34+ count was overall a stronger predictor of 6 month blood counts than was the total CD34+ cells/kg infused. Both factors retained their significance in multivariate analysis, controlling for clinical factors. In conclusion, subsets of CD34+ cells and clinical factors are inferior to the total CD34+ cell dose/kg and PBCD34+ count in predicting 6 month blood counts following ASCT. Bone Marrow Transplantation (2000) 26, 1299–1304.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Stewart DA, Guo D, Luider J et al. Factors predicting engraftment of autologous blood stem cells: CD34+ subsets inferior to the total CD34+ cell dose Bone Marrow Transplant 1999 23: 1237–1243

    Article  CAS  Google Scholar 

  2. Meldgaard Knudsen L, Jensen L, Jarlbaek L et al. Subsets of CD34+ hematopoietic progenitors and platelet recovery after high dose chemotherapy and peripheral blood stem cell transplantation Haematologica 1999 84: 517–524

    CAS  PubMed  Google Scholar 

  3. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy Blood 1995 86: 3961–3969

    CAS  PubMed  Google Scholar 

  4. Pecora AL, Preti RA, Gleim GW et al. CD34+CD33− cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients J Clin Oncol 1998 16: 2093–2104

    Article  CAS  Google Scholar 

  5. Olivieri A, Offidani M, Montanari M et al. Factors affecting hemopoietic recovery after high-dose therapy and autologous peripheral blood progenitor cell transplantation: a single center experience Haematologica 1998 83: 329–337

    CAS  PubMed  Google Scholar 

  6. Ketterer N, Salles G, Raba M et al. High CD34(+) cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation Blood 1998 91: 3148–3155

    CAS  PubMed  Google Scholar 

  7. Krause DS, Fackler MJ, Civin CI et al. CD34: structure, biology, and clinical utility Blood 1996 87: 1–13

    CAS  PubMed  Google Scholar 

  8. Buhring HJ, Asenbauer B, Katrilaka K et al. Sequential expression of CD34 and CD33 antigens on myeloid colony-forming cells Eur J Haematol 1989 42: 143–149

    Article  CAS  Google Scholar 

  9. Loken MR, Shah VO, Dattilio KL et al. Flow cytometric analysis of human bone marrow: I. Normal erythroid development Blood 1987 69: 255–263

    CAS  PubMed  Google Scholar 

  10. Debili N, Issaad C, Masse JM et al. Expression of CD34 and platelet glycoproteins during human megakaryocytic differentiation Blood 1992 80: 3022–3035

    CAS  PubMed  Google Scholar 

  11. Henon P, Sovalat H, Becker M et al. Primordial role of CD34+ 38− cells in early and late trilineage haemopoietic engraftment after autologous blood cell transplantation Br J Haematol 1998 103: 568–581

    Article  CAS  Google Scholar 

  12. Amigo ML, del Canizo MC, Caballero MD et al. Factors that influence long-term hematopoietic function following autologous stem cell transplantation Bone Marrow Transplant 1999 24: 289–293

    Article  CAS  Google Scholar 

  13. Perez-Simon JA, Martin A, Caballero D et al. Clinical significance of CD34+ cell dose in long-term engraftment following autologous peripheral blood stem cell transplantation Bone Marrow Transplant 1999 24: 1279–1283

    Article  CAS  Google Scholar 

  14. Haas R, Witt B, Mohle R et al. Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support Blood 1995 85: 3754–3761

    CAS  PubMed  Google Scholar 

  15. Kiss JE, Rybka WB, Winkelstein A et al. Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation Bone Marrow Transplant 1997 19: 303–310

    Article  CAS  Google Scholar 

  16. Stewart DA, Guo D, Morris D et al. Superior autologous blood stem cell mobilization from dose-intensive cyclophosphamide, etoposide, cisplatin plus G-CSF than from less intensive chemotherapy regimens Bone Marrow Transplant 1999 23: 111–117

    Article  CAS  Google Scholar 

  17. Terstappen LW, Huang S, Safford M et al. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38− progenitor cells Blood 1991 77: 1218–1227

    CAS  PubMed  Google Scholar 

  18. Bernstein ID, Leary AG, Andrews RG et al. Blast colony-forming cells and precursors of colony-forming cells detectable in long-term marrow culture express the same phenotype (CD33- CD34+) Exp Hematol 1991 19: 680–682

    CAS  PubMed  Google Scholar 

  19. Brandt J, Baird N, Lu L et al. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro J Clin Invest 1988 82: 1017–1027

    Article  CAS  Google Scholar 

  20. Schots R, Van Riet I, Damiaens S et al. The absolute number of circulating CD34+ cells predicts the number of hematopoietic stem cells that can be collected by apheresis Bone Marrow Transplant 1996 17: 509–515

    CAS  PubMed  Google Scholar 

  21. Perez-Simon JA, Caballero MD, Corral M et al. Minimal number of circulating CD34+ cells to ensure successful leukapheresis and engraftment in autologous peripheral blood progenitor cell transplantation Transfusion 1998 38: 385–391

    Article  CAS  Google Scholar 

  22. Cleeland CS, Demetri GD, Glaspy J et al. Identifying hemoglobin level for optimal quality of life: results of an incremental analysis J Clin Oncol 1999 18: 2215 (Abstr.)

    Google Scholar 

  23. Glaspy J, Bukowski R, Steinberg D et al. Impact of therapy with epoetin alfa on clinical outcomes in patients with nonmyeloid malignancies during cancer chemotherapy in community oncology practice. Procrit Study Group J Clin Oncol 1997 15: 1218–1234

    Article  CAS  Google Scholar 

  24. Lee J, Kook H, Chung I et al. Telomere length changes in patients undergoing hematopoietic stem cell transplantation Bone Marrow Transplant 1999 24: 411–415

    Article  CAS  Google Scholar 

  25. Friedberg JW, Neuberg D, Stone RM et al. Outcome in patients with myelodysplastic syndrome after autologous bone marrow transplantation for non-Hodgkin's lymphoma J Clin Oncol 1999 17: 3128–3135

    Article  CAS  Google Scholar 

  26. Bernstein ID, Andrews RG, Rowley S . Isolation of human hematopoietic stem cells Blood Cells 1994 20: 15–23

    CAS  PubMed  Google Scholar 

  27. Verfaillie CM . Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation Blood 1993 82: 2045–2053

    CAS  PubMed  Google Scholar 

  28. Lange C, Kaltz C, Thalmeier K et al. Hematopoietic reconstitution of syngeneic mice with a peripheral blood-derived, monoclonal CD34−, Sca-1+, Thy-1(low), c-kit+ stem cell line J Hematother Stem Cell Res 1999 8: 335–342

    Article  CAS  Google Scholar 

  29. Bhatia M, Bonnet D, Murdoch B et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity Nature Med 1998 4: 1038–1045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duggan, P., Guo, D., Luider, J. et al. Predictive factors for long-term engraftment of autologous blood stem cells. Bone Marrow Transplant 26, 1299–1304 (2000). https://doi.org/10.1038/sj.bmt.1702708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702708

Keywords

This article is cited by

Search

Quick links