Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Monocular deprivation induces homosynaptic long-term depression in visual cortex

Abstract

Brief monocular deprivation during early postnatal development can lead to a depression of synaptic transmission that renders visual cortical neurons unresponsive to subsequent visual stimulation through the deprived eye. The Bienenstock–Cooper–Munro (BCM) theory1 proposes that homosynaptic mechanisms of long-term depression (LTD) account for the deprivation effects2,3. Homosynaptic depression, by definition, occurs only at active synapses. Thus, in contrast to the commonly held view that the synaptic depression caused by monocular deprivation is simply a result of retinal inactivity, this theoretical framework indicates that the synaptic depression may actually be driven by the residual activity in the visually deprived retina4. Here we examine the validity of this idea by comparing the consequences of brief monocular deprivation by lid suture with those of monocular inactivation by intra-ocular treatment with tetrodotoxin. Lid suture leaves the retina spontaneously active, whereas tetrodotoxin eliminates all activity. In agreement with the BCM theory, our results show that monocular lid suture causes a significantly greater depression of deprived-eye responses in kitten visual cortex than does treatment with tetrodotoxin. These findings have important implications for mechanisms of experience-dependent plasticity in the neocortex.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental design.
Figure 2: Analysis of the ocular-dominance data pooled from all animals in each group.
Figure 3: Analysis by case.

References

  1. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    CAS  Article  Google Scholar 

  2. Bear, M. F., Cooper, L. N. & Ebner, F. F. Aphysiological basis for a theory of synaptic modification. Science 237, 42–48 (1987).

    ADS  CAS  Article  Google Scholar 

  3. Bear, M. F. in Mechanistic Relationships between Development and Learning (eds Carew, T. J., Menzel, R. & Shatz, C. J.) 205–225 (Wiley, New York, (1998)).

    Google Scholar 

  4. Blais, B. S., Shouval, H. Z. & Cooper, L. N. The role of presynaptic activity on the ocular dominance shift in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms. Proc. Natl Acad. Sci. USA 96, 1083–1087 (1999).

    ADS  CAS  Article  Google Scholar 

  5. Greuel, J. M., Luhman, H. J. & Singer, W. Evidence for a threshold in experience-dependent long-term changes of kitten visual cortex. Dev. Brain Res. 34, 141–149 (1987).

    Article  Google Scholar 

  6. Chapman, B., Jacobson, M. D., Reiter, H. O. & Stryker, M. P. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324, 154–156 (1986).

    ADS  CAS  Article  Google Scholar 

  7. Mower, G. D. The effect of dark rearing on the time course of the critical period in cat visual cortex. Dev. Brain Res. 58, 151–158 (1991).

    CAS  Article  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. The period of susceptibility ot the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).

    CAS  Article  Google Scholar 

  9. Kaplan, E., Purpura, K. & Shapley, R. M. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. (Lond.) 391, 267–288 (1987).

    CAS  Article  Google Scholar 

  10. Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).

    CAS  Article  Google Scholar 

  11. Reiter, H. O. & Stryker, M. P. Neural plasticity without postsynaptic action potentials: less active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc. Natl Acad. Sci. USA 85, 3623–3627 (1988).

    ADS  CAS  Article  Google Scholar 

  12. Bear, M. F., Kleinschmidt, A., Gu, Q. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    CAS  Article  Google Scholar 

  13. Ramoa, A. S., Paradiso, M. A. & Freeman, R. D. Blockade of intracortical inhibition in the kitten striate cortex: effect on receptive field proper;ties and associated loss of ocular dominance plasticity. Exp. Brain Res. 73, 285–296 (1988).

    CAS  Article  Google Scholar 

  14. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993).

    CAS  Article  Google Scholar 

  15. Bear, M. F. & Kirkwood, A. in Cortical Plasticity: LTP and LTD (eds Fazeli, M. S. & Collingridge, G. L.) 191–205 (Bios Scientific, Oxford, (1996)).

    Google Scholar 

  16. Bear, M. F. & Singer, W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176 (1986).

    ADS  CAS  Article  Google Scholar 

  17. Dudek, S. M. & Friedlander, M. J. Developmental down-regulation of LTD in cortical layer IV and its independence of modulation by inhibition. Neuron 16, 1–20 (1996).

    Article  Google Scholar 

  18. Kirkwood, A., Silva, A. & Bear, M. F. Age-dependent decrease of synaptic plasticity in the neocortex of αCaMKII mutant mice. Proc. Natl Acad. Sci. USA 94, 3380–3383 (1997).

    ADS  CAS  Article  Google Scholar 

  19. Kirkwood, A. & Bear, M. F. Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14, 3404–3412 (1994).

    CAS  Article  Google Scholar 

  20. Kojic, L., Gu, Q., Douglas, R. M. & Cynader, M. S. Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Dev. Brain Res. 101, 299–304 (1997).

    CAS  Article  Google Scholar 

  21. Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F. & Bear, M. F. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J. Neurosci.(in the press).

  22. Sah, P., Hestrin, S. & Nicoll, R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818 (1989).

    ADS  CAS  Article  Google Scholar 

  23. Wiesel, T. N. & Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1060–1072 (1965).

    CAS  Article  Google Scholar 

  24. Stent, G. S. Aphysiological mechanism for Hebb's postulate of learning. Proc. Natl Acad. Sci. USA 70, 997–1001 (1973).

    ADS  CAS  Article  Google Scholar 

  25. von der Malsburg, C. Self-organization of orientation-sensitive columns in the striate cortex. Kybernetik 14, 85–100 (1973).

    CAS  Article  Google Scholar 

  26. Kirkwood, A., Rioult, M. G. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    ADS  CAS  Article  Google Scholar 

  27. Rossi, A. F., Rittenhouse, C. D. & Paradiso, M. A. The representation of brightness in primary visual cortex. Science 273, 1104–1107 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute, the NIH and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Bear.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rittenhouse, C., Shouval, H., Paradiso, M. et al. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347–350 (1999). https://doi.org/10.1038/16922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16922

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing