Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct interaction of microtubule- and actin-based transport motors

Abstract

The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actinnetwork is proposed to be used for short-range transport1, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport2. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport3 but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework4, and kinesins are rapidly degraded upon their arrival in neuronal termini5, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA (ref. 6), can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domains of MyoVA, showing the baits (numbered 1–12) used in yeast two-hybrid screens and the region of MyoVA that interacts with KhcU.
Figure 2: Specificity of the interaction between MyoVA and KhcU.
Figure 3: MyoVA interacts with KhcU in mammalian cells.
Figure 4: MyoVA co-immunoprecipitates with KhcU and Klc (kinesin light chain) in normal cell extracts.
Figure 5: MyoVA and KhcU proteins often co-localize in Melan-a cells.

Similar content being viewed by others

References

  1. Langford, G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82–88 (1995).

    Article  CAS  Google Scholar 

  2. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).

    Article  CAS  Google Scholar 

  3. Brady, S. T. Akinesin medley: biochemical and functional heterogeneity. Trends Cell Biol. 5, 159–164 (1995).

    Article  CAS  Google Scholar 

  4. LeBeux, Y. J. & Willemot, J. An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses. Cell. Tissue Res. 160, 37–68 (1975).

    CAS  PubMed  Google Scholar 

  5. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    Article  CAS  Google Scholar 

  6. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  Google Scholar 

  7. Dekker-Ohno, K., Oda, S., Yamamura, H. & Kondo, K. An ataxic mutant rat with dilute coat color. Lab. Anim. Sci. 43, 370–372 (1993).

    CAS  PubMed  Google Scholar 

  8. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Anovel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Provance, D. W., Wei, M., Ipe, V. & Mercer, J. A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl Acad. Sci. USA 93, 14554–14558 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Wu, X. F., Bowers, B., Wei, Q., Kocher, B. & Hammer, J. A. Myosin V associates with melanosomes in mouse melanocytes — evidence that myosin V is an organelle motor. J. Cell Sci. 110, 847–859 (1997).

    CAS  PubMed  Google Scholar 

  11. Dekker-Ohno, K. et al. Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res. 714, 226–230 (1996).

    Article  CAS  Google Scholar 

  12. Takagishi, Y. et al. The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci. Lett. 215, 169–172 (1996).

    Article  CAS  Google Scholar 

  13. Prasad, R. et al. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res. 53, 5624–5628 (1993).

    CAS  PubMed  Google Scholar 

  14. Miyamoto, H. et al. canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev. 9, 612–625 (1995).

    Article  CAS  Google Scholar 

  15. Ponting, C. P. AF-6/cno: neither a kinesin nor a myosin, but a bit of both. Trends Biochem. Sci. 20, 265–266 (1995).

    Article  CAS  Google Scholar 

  16. Gudkov, A. V. et al. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl Acad. Sci. USA 91, 3744–3748 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Leopold, P. L., McDowall, A. W., Pfister, K. K., Bloom, G. S. & Brady, S. T. Association of kinesin with characterized membrane-bounded organelles. Cell Motil. Cytoskeleton 23, 19–33 (1992).

    Article  CAS  Google Scholar 

  18. Brady, S. T., Pfister, K. K. & Bloom, G. S. Amonoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc. Natl. Acad. Sci. USA 87, 1061–1065 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Hirokawa, N. et al. Kinesin associates with anterogradely transported membranous organelles in vivo. J. Cell Biol. 114, 295–302 (1991).

    Article  CAS  Google Scholar 

  20. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. Monoclonal antibodies tokinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J.Cell Biol. 108, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  21. Rodionov, V. I., Gyoeva, F. K. & Gelfand, V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc. Natl Acad. Sci. USA 88, 4956–4960 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Niclas, J., Navone, F., Hom-Booher, N. & Vale, R. D. Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Neuron 12, 1059–1072 (1994).

    Article  CAS  Google Scholar 

  23. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992).

    Article  CAS  Google Scholar 

  24. Tsan, J. T. et al. in The Yeast Two-Hybrid Systems(eds Bartel, P. L. & Fields, P. S.) 217–232 (Oxford Univ. Press, Oxford, (1997)).

    Google Scholar 

  25. Stenoien, D. S. & Brady, S. T. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689 (1997).

    Article  CAS  Google Scholar 

  26. Evans, L. L., Hammer, J. & Bridgman, P. C. Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J. Cell Sci. 110, 439–449 (1997).

    CAS  PubMed  Google Scholar 

  27. Prekeris, R. & Terrian, D. M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J. Cell Biol. 137, 1589–1601 (1997).

    Article  CAS  Google Scholar 

  28. Lillie, S. H. & Brown, S. S. Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358–361 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Lillie, S. H. & Brown, S. S. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–842 (1994).

    Article  CAS  Google Scholar 

  30. Seperack, P. K., Mercer, J. A., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J. 14, 2326–2332 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hammer for the MyoVA antibody DIL-2; S. J. Elledge for the pAS2vector and Y187 yeast strain; S. Hollenberg for the mouse embryonic cDNA library; and R. Frederickson for help with graphics. This work was supported by the National Cancer Institute, DHHS, under contract with ABL, and by a grant to S.T.B. from the National Institute of Neurological Disease and Stroke NINDS, a joint grant from NASA and the National Institute of Aging, and a grant from the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JD., Brady, S., Richards, B. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999). https://doi.org/10.1038/16722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing