Potential Barrier in Dinitrogen Tetroxide

THE communication¹ by C. K. and E. H. Ingold on the structure of N_2O_4 reviews the chemical and physical evidence in favour of the various structures proposed for N_2O_4 . The authors conclude that the structure is

which is equivalent to the D_{zh} structure proposed by Sutherland² on the basis of the spectroscopic data. Using the fundamentals proposed by Sutherland and the following molecular dimensions, namely, $\angle ONO =$ 120°, $r_{\rm NO} = 1.15$ A., $r_{\rm NN} = 1.66$ A.³, the entropy at 298° K. may be calculated by the usual methods of statistical thermodynamics⁴. In this way the entropy of translation for gaseous N₂O₄ at 298° K. is found to be 39.44 cal./deg./mole, and that due to vibration and rotation without taking torsion into account is 30.00 ± 0.3 cal./deg./mole. (The error of ± 0.3 E.U. in the rotational entropy is estimated by assuming that the error in each molecular dimension is \pm 5 per that the error in each molecular dimension is \pm 5 per cent.) The entropy observed by Giauque and Kemp⁵ was 72.73 cal./deg./mole. Thus the amount of entropy contributed by the degree of freedom associated with internal rotation is 3.29 ± 0.3 cal./deg./mole. Assuming the potential energy is of the form $V = B/2 (1 - \cos 2\varphi)$ the torsional frequency and potential barrier B are related to the moment of

inertia about the torsional axis by $v = \frac{1}{2\pi} \left[\frac{8B}{I}\right]^{1/2}$ Then if the set of the set o

Then if the potential barrier is considered to be so high that the contribution to the entropy is simply due to a torsional oscillation, then the torsional frequency is 108 ± 20 cm.⁻¹, with a corresponding barrier of 8.5 ± 2 cal./mole.

On the other hand, if the barrier is not so high that a torsional oscillation may be used in the partition function, the tables of Pitzer and Gwinn⁶ for a hindered rotator must be used. From these tables and the following values: $I_m = I/4 = 27.5 \times 10^{-40}$ c.g.s. units, n = 2, $Q_f = 12.6$, entropy of internal rotation = 6.06 E.U., and $S_f - S = 2.77 \pm 0.3$, it is found that the barrier is 9.2 ± 2 cal./mole. The corresponds to a frequency of 112 ± 20 cm.⁻¹. The barrier is evidently so high, $\sim 9 \pm 2$ cal./mole, that both calculations yield very nearly the same result.

The molecular model proposed by Longuet-Higgins', namely,

with D_{2h} symmetry was introduced as an alternative to the ethylene-like structure of Sutherland to explain the spectrum and the abnormally long N--N distance³

and low N-N force constant⁸. This model has no torsional mode. however, so that the calculated entropy and observed entropy differ by about 3 E.U. This lack of agreement is strong evidence for excluding this model as a possible structure.

Since the repulsion of the oxygen atoms would stabilize the out-of-plane form (D_{id}) , there must be a strong interaction ($\geq 9 \pm 2$ cal./mole) stabilizing the planar form. Resonance between the forms suggested by the Ingolds would be at a maximum when the structure is planar⁹ and accounts for the

stability of the planar form. The heat capacity C_p^{0} at 298° K. of N₂O₄ is calculated to be 17.11 cal./mole for a barrier of 9 cal./mole and 17.06 cal./mole for a completely hindered rotator. The available experimental results on the heat capacity of N_2O_4 are: 11.4 cal./mole at 307° K.¹⁰ and 20 cal./mole at 300° K.¹¹. An experimental redetermination of the specific heat seems to be indicated.

> H. J. BERNSTEIN W. G. Burns*

Division of Chemistry, National Research Council,

Ottawa. Aug. 10.

- * National Research Laboratories Postdoctorate Fellow, 1945-50.

- ¹ Ingold, C. K., and Ingold, E. H., *Nature*, **159**, 743 (1947).
 ² Sutherland, G. B. M., *Proc. Roy. Soc.*, A, **141**, 342, 535 (1933).
 ³ Maxwell, L. R., Mosley, V. M., and Denning, L. S., *J. Chem. Phys.*, **2**, 331 (1934).
- 2, 331 (1934).
 4 Herzberg, G., "Infra-red and Raman Spectra", 501 et seq. (New York: D. van Nostrand, 1945).
 ⁶ Giauque, W. F., and Kemp, J. D., J. Chem. Phys., 6, 40 (1938).
 ⁶ Pitzer, K. S., and Gwinn, W. D., J. Chem. Phys., 10, 428 (1942).
 ⁸ Longuet-Higgins, H. C., Nature, 153, 408 (1944).
 ⁸ Duchesne, J., C.R. Acad. Sci., Paris, 204, 1112 (1937).
 ⁹ See, for example, Klotz, I. M., J. Chem. Educ., 22 328 (1945).
 ¹⁰ McCollum, E. D., J. Amer. Chem. Soc., 49, 28 (1927).
 ¹¹ Partington, J. R., and Shilling, W. G., "The Specific Heat of Gases", 188 (London: Ernest Benn, 1924).

Synthesis of Thiazolid-2: 5-Dione

RECENT interest in the synthesis of polypeptides has centred around the ability of oxazolid-2: 5-dione and its 3- and 4-substituted derivatives to polymerize with loss of carbon dioxide or to condense with amino-acids or their esters. Cook and Levy¹ have now shown that the analogous 2-thiothiazolid-5-one and its 4-methyl derivative may also be used for the introduction of glycyl or alanyl residues. Attempts by Cook, Heilbron and Hunter² to obtain the structural cross of the above heterocycles, that is, thiazolid-2:5-dione (III), were unsuccessful. These authors were interested in the latter compound and its derivatives, as they considered they would be of a stability intermediate between that of oxazolid-2: 5-dione and 2-thiothiazolid-5-one and would consequently be more easily handled. The parent compound has now, unexpectedly, been obtained in good yield by the accompanying reaction scheme.

A variety of potassium alkylxanthates (alkoxydithioformates) were esterified to give ethyl alkoxydithioformates (I), which condensed smoothly with potassium aminoacetate to give N-thiocarbalkoxy-glycines (II). Cyclization of (II) with acetic anhydride gave the expected 2-alkoxythiazol-5-one (IV), the

