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Potential Barrier in Dinitrogen Tetroxide 
THE communication1 by C. K. and E. H. Ingold 

on the structure of N 2O, reviews the chemical and 
physical evidence in favour of the various structures 
proposed for N 2O4 • The authors conclude that the 
structure is 
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which is equivalent to the D,1, structure proposed by 
Sutherland2 on the basis of the spectroscopic data. 
Using the fundamentals proposed by Sutherland and 
the following molecular dimensions, namely, L ONO= 
120°, rNo = 1·15A., rNN = 1·66A.3

, the entropy at 
298° K. may be calculated by the usual methods of 
statistical thermodynamics\ In this way the entropy 
of translation for gaseous N 20 4 at 298° K. is found 
to be 39 ·44 cal./deg./mole, and that due to vibration 
and rotation without taking torsion into account is 
30·00 ± 0·3 cal./deg./mole. (The error of ± 0·3 E.u. 
in the rotational entropy is estimated by assuming 
that the error in each molecular dimension is ± 5 per 
cent.) The entropy observed by Giauque and Kemp" 
was 72·73 cal./deg./mole. Thus the amount of 
entropy contributed by the degree of freedom 
associated with internal rotation is 3·29 ± 0·3 
cal./deg./mole. Assuming .the potential energy is of 
the form V = B /2 ( 1- cos 2cp) the torsional frequency 
and potential barrier B are related to the moment of 
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inertia about the torsional axis by v = 27t T 
Then if the potential barrier is considered to be so 
high that the contribution to the entropy is simply 
due to a torsional oscillation, then the torsional 
frequency is 108 ± 20 cm.-1, with a corresponding 
barrier of 8·5 ± 2 cal./mole. 

On the other hand, if the barrier is not so high 
that a torsional oscillation may be used in the parti­
tion function, the tables of Pitzer and Gwinn• for 
a hindered rotator must be used. From these tables 
and the following values: Im= 1/4 = 27·5 X 10-•o 
C.G.S. units, n = 2, Qi = 12 ·6, entropy of internal 
rotation = 6·06 E.u., and Si- S = 2·77 ± 0·3, it 
is found that the barrier is 9 ·2 ± 2 cal./mole. This 
corresponds to a frequency of 112 ± 20 cm.-1 • The 
barrier is evidently so high, ,...._, 9 ± 2 cal./mole, that 
both calculations yield very nearly the same result. 

The molecular model proposed by Longuet­
Higgins7, namely, 
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with D 21, symmetry was introduced as an alternative 
to the ethylene-like structure of Sutherland to explain 
the spectrum and the abnormally long N- N distance3 

and low N-N force 
constant8• This model 
has no torsional mode, 
however, so that the 

Since the repulsion of the oxygen atoms would 
stabilize the out-of-plane form (D,d), there must be 
a strong interaction ( >-9 ± 2 cal./mole) stabilizing 
the planar form. Resonance between the forms 
suggested by the Ingolds would be at a maximum 
when the structure is planar• and accounts for the 
stability of the planar form. 

The heat capacity Cp0 at 298° K. of N 2O, is cal­
culated to be 17 · 11 cal./mole for a barrier of 9 ca!./mole 
and 17 ·06 cal./mole for a completely hindered rotator. 
The available experimental results on the heat 
capacity of N,O4 are: 11 ·4 ca!./mole at 307° K.10 

and 20 cal./mole at 300° K. 11 • An experimental re­
determination of the specific heat seems to be 
indicated. 
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Synthesis of Thiazolid-2: 5-Dione 
RECENT interest in the synthesis of polypeptides 

has centred around the ability of oxazolid-2 : 5-dione 
and its 3- and 4-substituted derivatives to polymerize 
with loss of carbon dioxide or to condense with 
amino-acids or their esters. Cook and Levy1 have 
now shown that the analogous 2-thiothiazolid-5-one 
and its 4-methyl derivative may also be used for the 
introduction of glycyl or alanyl residues. Attempts 
by Cook, Heilbron and Hunter 2 to obtain the struc­
tural cross of the above heterocycles, that is, thiazolid-
2 : 5-dione (III), were unsuccessful. These authors 
were interested in tho latter compound and its deriva­
tives, as they considered they would be of a stability 
intermediate between that of oxazolid-2 : 5-dione and 
2-thiothiazolid-5-one and would consequently be 
more easily handled. The parent compound has now, 
unexpectedly, been obtained in good yield by the 
accompanying reaction scheme. 

A variety of potassium alkylxanthates (alkoxy­
dithioformates) were esterified to give ethyl alkoxydi­
thioformates (I), which condensed smoothly with 
potassium aminoacetate to give N-thiocarbalkoxy­
glycines (II). Cyclization of (II) with acetic anhydride 
gave the expected 2-a.lkoxythiazol-5-one (IV), the 
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calculated entropy 
and observed entropy RO • CS . SEt 
differ by about 3 E.u. 
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This lack of agreement. 
is strong evidence for 
excluding this model 
as a possible structure. 
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