Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord

Abstract

Glutamate, the major excitatory neurotransmitter in the central nervous system, activates three different receptors that directly gate ion channels, namely receptors for AMPA (α-amino-3-hydroxy-5-methyl isoxozole propionic acid), NMDA (N-methyl-D-aspartate), and kainate, a structural analogue of glutamate. The contribution of AMPA and NMDA receptors to synaptic transmission and plasticity is well established1. Recent work on the physiological function of kainate receptors has focused on the hippocampus2, where repetitive activation of the mossy-fibre pathway generates a slow, kainate-receptor-mediated excitatory postsynaptic current (EPSC)3,4,5. Here we show that high-intensity single-shock stimulation (of duration 200 microseconds) of primary afferent sensory fibres produces a fast, kainate-receptor-mediated EPSC in the superficial dorsal horn of the spinal cord. Activation of low-threshold afferent fibres generates typical AMPA-receptor-mediated EPSCs only, indicating that kainate receptors may be restricted to synapses formed by high-threshold nociceptive (pain-sensing) and thermoreceptive primary afferent fibres. Consistent with this possibility, kainate-receptor-mediated EPSCs are blocked by the analgesic µ-opiate-receptor agonist Damgo and spinal blockade of both kainate and AMPA receptors produces antinociception. Thus, spinal kainate receptors contribute to transmission of somatosensory inputs from the periphery to the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AMPA- and NMDA-receptor antagonists produce incomplete block of primary afferent EPSCs.
Figure 2: Kainate-receptor-mediated synaptic transmission.
Figure 3: Kainate-receptor-mediated currents in spinal cultured neurons and a slice.
Figure 4: Kainate receptors reside at synapses receiving high-threshold afferents.
Figure 5: Kainate receptors contribute to ascending sensory transmission.

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Lerma, J., Morales, M., Vicente, M. A. & Herreras, O. Glutamate receptors of the kainate type and synaptic transmission. Trends Neurosci. 20, 9–12 (1997).

    Article  CAS  Google Scholar 

  3. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow synaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179–182 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Mulle, C. et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Yaksh, T. L. & Malmberg, A. B. in Textbook of Pain (edited by Wall, P. D. & Melzack, R.) 165–200 (Churchill Livingstone, New York, (1994)).

    Google Scholar 

  7. Yoshimura, M. & Jessell, T. M. Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J. Physiol. (Lond.) 430, 315–335 (1990).

    Article  CAS  Google Scholar 

  8. Kumazawa, T. & Perl, E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn function organization. J. Comp. Neurol. 177, 417–434 (1978).

    Article  CAS  Google Scholar 

  9. Light, A. R., Trevino, D. L. & Perl, E. R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186, 151–171 (1979).

    Article  CAS  Google Scholar 

  10. Bleakman, D. et al. Activity of 2,3-benzodiazepines at naive rat and recombinant human glutamate receptors in vitro; stereospecificity and selectivity profiles. Neuropharmacol. 35, 1689–1702 (1996).

    Article  CAS  Google Scholar 

  11. Pelletier, J. C., Hesson, D. P., Jones, K. A. & Costa, A. -M. Substituted 1,2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. J. Med. Chem. 39, 343–346 (1996).

    Article  CAS  Google Scholar 

  12. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate recceptor-mediated responses in hippocampal neurons. Neuron 14, 185–189 (1995).

    Article  CAS  Google Scholar 

  13. Wilding, T. J. & Huettner, J. E. Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587 (1995).

    CAS  PubMed  Google Scholar 

  14. Jones, K. A., Wilding, T. J., Huettner, J. E. & Costa, A. -M. Desensitization of kainate receptors by kainate, glutamate and diasteriomers of 4-methylglutamate. Neuropharmacol. 36, 853–863 (1997).

    Article  CAS  Google Scholar 

  15. Wilding, T. J. & Huettner, J. E. Activation and desensitization of hipocampal kainate receptors. J. Neurosci. 17, 2713–2721 (1997).

    Article  CAS  Google Scholar 

  16. Partin, K. M., Patneau, D. K., Winters, C. A., Mayer, M. L. & Buonanno, A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069–1082 (1993).

    Article  CAS  Google Scholar 

  17. Todd, A. J., Spike, R. C., Price, R. F. & Neilson, M. Immunocytochemical evidence that neurotension is present in glutamatergic neurons in the superficial dorsal horn of the rat. J. Neurosci. 14, 774–784 (1994).

    Article  CAS  Google Scholar 

  18. Tölle, T. R., Berthele, A., Zieglgänsberger, W., Seeburg, P. H. & Wisden, W. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periagqueductal gray. J. Neurosci. 13, 5009–5028 (1993).

    Article  Google Scholar 

  19. Wisden, W. & Seeburg, P. H. Acomplex mosaic of high-affinity kainate receptors in rat brain. J. Neurosci. 13, 3582–3598 (1993).

    Article  CAS  Google Scholar 

  20. Petralia, R. S., Wang, Y. -X. & Wenthold, R. J. Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J. Comp. Neurol. 349, 85–110 (1994).

    Article  CAS  Google Scholar 

  21. Fitzgerald, M., Butcher, T. & Shortland, P. Development changes in the laminar termination of A fibre cutaneous sensory afferents in the rat spinal cord dorsal horn. J. Comp. Neurol. 348, 225–233 (1994).

    Article  CAS  Google Scholar 

  22. Coggeshall, R. E., Jennings, E. A. & Fitzgerald, M. Evidence that large myelinated primary afferent fibers make synaptic contacts in lamina II of neonatal rats. Brain Res. Dev. Brian Res. 92, 81–90 (1996).

    Article  CAS  Google Scholar 

  23. Baba, H., Yoshimura, M., Nishi, S. & Shimoji, K. Synaptic responses of substantia gelatinosa neurons to dorsal column stimulation in rat spinal cord in vitro. J. Physiol. (Lond.) 478, 87–99 (1994).

    Article  Google Scholar 

  24. Huang, L. -Y. M., Carlton, S. M. & Willis, W. D. Identification of spinothalamic tract cells in fresh, unfixed rat spinal cord. J. Neurosci. Methods 14, 91–96 (1985).

    Article  CAS  Google Scholar 

  25. Zhuo, M. NMDA receptor-dependent long term hyperalgesia after tail amputation in mice. Eur. J. Pharmacol. 349, 211–220 (1998).

    Article  CAS  Google Scholar 

  26. Cao, Y. Q. et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392, 390–394 (1998).

    Article  ADS  CAS  Google Scholar 

  27. De Felipe, C. et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392, 394–397 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Li, P. & Zhuo, M. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393, 695–698 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Leander for GYKI 53655. This work was supported in part by grants from NIDA (to M.Z.) and NINDS (to J.E.H.) of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Wilding, T., Kim, S. et al. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999). https://doi.org/10.1038/16469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16469

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing