Letter | Published:

Feret‘s Statistical Diameter as a Measure of Particle Size

Nature volume 162, pages 329330 (28 August 1948) | Download Citation



VARIOUS measures of the size of irregularly shaped particles as seen in profile under the microscope have been used, chosen according to their theoretical significance or practical ease of measurement. These include, using Heywood‘s notation1,2 : (i) the diameter of the circle of equal area, d ; (ii) the diameter of the circle of equal perimeter, D ; (iii) the length of line bisecting the profile area (Martin‘s statistical diameter3), M ; and (iv) the perpendicular distance between parallel tangents touching opposite sides of the profile (Feret‘s statistical diameter4), F. M and F are determined for randomly oriented particles, thus giving an average value over all possible orientations. d is usually regarded as the ideal measure of particles seen in profile, but is somewhat difficult to determine experimentally with precision. It is, however, common practice when sizing very small particles to estimate d visually by comparing them with standard reference circles on a Patterson and Cawood or similar type of eyepiece graticule5,6. M and F are convenient to measure in practice with aid of an eyepiece scale or filar micrometer, and have been extensively used by various Workers. D, or rather the ratio D/d, termed by Heywood1 the ‘contour ratio', and its reciprocal called the ‘degree of circularity' by Wadell7, have been used in discussing the shape and hydrodynamical properties of particles. For these purposes D has usually been determined by direct perimeter measurement of the projected images of particles. It does not appear to have been adopted intentionally in any work known to me as a direct single measure of particle size.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , Proc. Inst. Mech. Eng., 125, 383 (1933).

  2. 2.

    , Bull. Inst. Min. and Met., No. 477 (March 1946).

  3. 3.

    , , and , Trans. Brit. Ceramic Soc., 23, 61 (1923–24).

  4. 4.

    , Assoc. Internat. pour l‘Essai des Mat., Zurich, 1931, 2, Group D.

  5. 5.

    , and , Trans. Farad. Soc., 32, 1084 (1936).

  6. 6.

    , Chem. Ind., 62, 1374 (1943).

  7. 7.

    , J. Frank. Inst., 217, 459 (1934).

  8. 8.

    , and , J. Soc. Chem. Ind., 65, 52 (1946).

  9. 9.

    , C.R. Acad. Sci., Paris, 13, 1060 (1841).

  10. 10.

    (see following communication).

Download references

Author information


  1. National Coal Board, Scientific Department, 4 Albert Hall Mansions, London, S.W.7. April 26.

    • W. H. WALTON


  1. Search for W. H. WALTON in:

About this article

Publication history




Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.