Abstract
Objectives:
To investigate the effect of three different food ingredients tyrosine, green tea extract (GTE) and caffeine on resting metabolic rate and haemodynamics, and on ad libitum energy intake (EI) and appetite.
Methods:
Twelve healthy, normal weight men (age: 23.7±2.6 years, mean±s.d.) participated in a four-way crossover, randomized, placebo-controlled, double-blind study. Treatments were administered as tablets of 500 mg GTE, 400 mg tyrosine, 50 mg caffeine, or placebo, and were separated by >3-day washout. The acute thermogenic response was measured in a ventilated hood system for 4 h following ingestion. Blood pressure, heart rate (HR), and subjective appetite sensations were assessed hourly and ad libitum EI 4 h post-dose.
Results:
Caffeine induced a thermogenic response of 6% above baseline value (72±25 kJ per 4 h, mean±s.e.) compared to placebo (P<0.0001). The thermogenic responses to GTE and tyrosine were not significantly different from placebo. Tyrosine tended to increase 4-h respiratory quotient by 1% compared to placebo (0.01±0.005, P=0.05). Ad libitum EI was not significantly different between treatments but was reduced by 8% (−403±183 kJ), 8% (−400±335 kJ) and 3% (−151±377 kJ) compared to placebo after intake of tyrosine, GTE and caffeine, respectively. No significant difference in haemodynamics was observed between treatments.
Conclusions:
Only caffeine was thermogenic in the given dose and caused no haemodynamic side effects. The sample size was probably too small to detect any appetite suppressant properties of the treatments. Further investigations are required.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Effects of Bang® Keto Coffee Energy Drink on Metabolism and Exercise Performance in Resistance-Trained Adults: A Randomized, Double-blind, Placebo-controlled, Crossover Study
Journal of the International Society of Sports Nutrition Open Access 24 August 2020
-
Physiological process of fat loss
Bulletin of the National Research Centre Open Access 30 December 2019
-
The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in resistance trained males: a randomized, double-blind, placebo-controlled, cross-over trial
Journal of the International Society of Sports Nutrition Open Access 01 April 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequier E (1980). Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 33, 989–997.
Arciero PJ, Gardner AW, Benowitz NL, Poehlman ET (1998). Relationship of blood pressure, heart rate and behavioral mood state to norepinephrine kinetics in younger and older men following caffeine ingestion. Eur J Clin Nutr 52, 805–812.
Arciero PJ, Gardner AW, Calles-Escandon J, Benowitz NL, Poehlman ET (1995). Effects of caffeine ingestion on NE kinetics, fat oxidation, and energy expenditure in younger and older men. Am J Physiol 268, E1192–E1198.
Astrup A, Toubro S (1993). Thermogenic, metabolic, and cardiovascular responses to ephedrine and caffeine in man. Int J Obes Relat Metab Disord 17 (Suppl 1), S41–S43.
Astrup A, Breum L, Toubro S, Hein P, Quaade F (1992). The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double blind trial. Int J Obes Relat Metab Disord 16, 269–277.
Astrup A, Toubro S, Cannon S, Hein P, Madsen J (1991). Thermogenic synergism between ephedrine and caffeine in healthy volunteers: a double-blind, placebo-controlled study. Metabolism 40, 323–329.
Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990). Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51, 759–767.
Berube-Parent S, Pelletier C, Dore J, Tremblay A (2005). Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 94, 432–436.
Borchardt RT, Huber JA (1975). Catechol O-methyltransferase. 5. Structure–activity relationships for inhibition by flavonoids. J Med Chem 18, 120–122.
Bracco D, Ferrarra JM, Arnaud MJ, Jequier E, Schutz Y (1995). Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 269, E671–E678.
Debrah K, Haigh R, Sherwin R, Murphy J, Kerr D (1995). Effect of acute and chronic caffeine use on the cerebrovascular, cardiovascular and hormonal responses to orthostasis in healthy volunteers. Clin Sci (Lond) 89, 475–480.
Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS (2005). Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 94, 1026–1034.
Diepvens K, Westerterp KR, Westerterp-Plantenga MS (2007). Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin and green tea. Am J Physiol Regul Integr Comp Physiol 292, R77–R85.
Dulloo AG (1993). Ephedrine, xanthines and prostaglandin-inhibitors: actions and interactions in the stimulation of thermogenesis. Int J Obes Relat Metab Disord 17 (Suppl 1), S35–S40.
Dulloo AG (2002). Herbal simulation of ephedrine and caffeine in treatment of obesity. Int J Obes Relat Metab Disord 26, 590–592.
Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. (1999). Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70, 1040–1045.
Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS (1989). Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr 49, 44–50.
Dulloo AG, Seydoux J, Girardier L (1994). Paraxanthine (metabolite of caffeine) mimics caffeine's interaction with sympathetic control of thermogenesis. Am J Physiol 267, E801–E804.
Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000). Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24, 252–258.
Flint A, Raben A, Blundell JE, Astrup A (2000). Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord 24, 38–48.
Hollands MA, Arch JR, Cawthorne MA (1981). A simple apparatus for comparative measurements of energy expenditure in human subjects: the thermic effect of caffeine. Am J Clin Nutr 34, 2291–2294.
Hull KM, Maher TJ (1990). -tyrosine potentiates the anorexia induced by mixed-acting sympathomimetic drugs in hyperphagic rats. J Pharmacol Exp Ther 255, 403–409.
Hull KM, Maher TJ (1991). -tyrosine fails to potentiate several peripheral actions of the sympathomimetics. Pharmacol Biochem Behav 39, 755–759.
Hull KM, Maher TJ (1992). Effects of L-tyrosine on mixed-acting sympathomimetic-induced pressor actions. Pharmacol Biochem Behav 43, 1047–1052.
James JE (1994). Chronic effects of habitual caffeine consumption on laboratory and ambulatory blood pressure levels. J Cardiovasc Risk 1, 159–164.
Jessen A, Buemann B, Toubro S, Skovgaard IM, Astrup A (2005). The appetite-suppressant effect of nicotine is enhanced by caffeine. Diabetes Obes Metab 7, 327–333.
Jessen AB, Toubro S, Astrup A (2003). Effect of chewing gum containing nicotine and caffeine on energy expenditure and substrate utilization in men. Am J Clin Nutr 77, 1442–1447.
Kao YH, Hiipakka RA, Liao S (2000). Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141, 980–987.
Klaus S, Pultz S, Thone-Reineke C, Wolfram S (2005). Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond) 29, 615–623.
Kovacs EM, Mela DJ (2006). Metabolically active functional food ingredients for weight control. Obes Rev 7, 59–78.
Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS (2004). Effects of green tea on weight maintenance after body-weight loss. Br J Nutr 91, 431–437.
Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006). Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83, 674–680.
Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A (2007). Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr 85, 678–687.
Magkos F, Kavouras SA (2005). Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45, 535–562.
Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y et al. (2005). Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 81, 122–129.
Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM (2005). Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 23, 921–928.
Pasman WJ, Westerterp-Plantenga MS, Saris WH (1997). The effectiveness of long-term supplementation of carbohydrate, chromium, fibre and caffeine on weight maintenance. Int J Obes Relat Metab Disord 21, 1143–1151.
Rasmussen DD, Ishizuka B, Quigley ME, Yen SS (1983). Effects of tyrosine and tryptophan ingestion on plasma catecholamine and 3, 4-dihydroxyphenylacetic acid concentrations. J Clin Endocrinol Metab 57, 760–763.
Toubro S, Astrup AV, Breum L, Quaade F (1993). Safety and efficacy of long-term treatment with ephedrine, caffeine and an ephedrine/caffeine mixture. Int J Obes Relat Metab Disord 17 (Suppl 1), S69–S72.
Tremblay A, Masson E, Leduc S, Houde A, Després J-P (1988). Caffeine reduces spontaneous energy intake in men but not in women. Nutr Res 8, 553–558.
Weir JB (1949). New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 1–9.
Westerterp-Plantenga MS, Lejeune MP, Kovacs EM (2005). Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 13, 1195–1204.
Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P (2005). TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab 49, 54–63.
Yoshioka M, Doucet E, Drapeau V, Dionne I, Tremblay A (2001). Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br J Nutr 85, 203–211.
Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M et al. (1999). Effects of red pepper on appetite and energy intake. Br J Nutr 82, 115–123.
Zemel MB (2002). Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 21, 146S–151S.
Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I (2004). Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In vivo 18, 55–62.
Acknowledgements
We thank John Lind for his expert technical assistance and Jens Kondrup for critical reading of the manuscript. The study was supported by a grant from Science, Toxicology & Technology, San Francisco, CA, USA. The dietary supplements containing the ingredients examined in the present paper were manufactured by Alpine Health Products, Salt Lake City, UT, USA, and are not commercially available.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Belza, A., Toubro, S. & Astrup, A. The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. Eur J Clin Nutr 63, 57–64 (2009). https://doi.org/10.1038/sj.ejcn.1602901
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.ejcn.1602901
Keywords
- energy expenditure
- energy intake
- appetite
- tyrosine
- caffeine
- green tea
This article is cited by
-
Effects of Bang® Keto Coffee Energy Drink on Metabolism and Exercise Performance in Resistance-Trained Adults: A Randomized, Double-blind, Placebo-controlled, Crossover Study
Journal of the International Society of Sports Nutrition (2020)
-
Physiological process of fat loss
Bulletin of the National Research Centre (2019)
-
The effects of a single-dose thermogenic supplement on resting metabolic rate and hemodynamic variables in healthy females - a randomized, double-blind, placebo-controlled, cross-over trial
Journal of the International Society of Sports Nutrition (2016)
-
The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in resistance trained males: a randomized, double-blind, placebo-controlled, cross-over trial
Journal of the International Society of Sports Nutrition (2016)
-
Acute effectiveness of a “fat-loss” product on substrate utilization, perception of hunger, mood state and rate of perceived exertion at rest and during exercise
Journal of the International Society of Sports Nutrition (2015)