Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nutritional hormesis

Abstract

Objective:

Hormesis, the biological and toxicological concept that small quantities have opposite effects from large quantities, is reviewed with emphasis on its relevance to nutrition.

Results:

Hormetic and other dose–response relationships are categorized, depicted, and discussed. Evidence for nutritional hormesis is presented for essential vitamin and mineral nutrients, dietary restriction, alcohol (ethanol), natural dietary and some synthetic pesticides, some herbicides, and acrylamide. Some of the different hormetic mechanisms that have been proposed are reviewed.

Conclusions:

The credence and relevance of hormesis to nutrition are considered to be established. The roles of hormesis in nutritional research and in formulating nutritional guidelines are discussed.

Sponsorship:

The New York City Department of Health and Mental Hygiene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ames BN (1998). Micronutrients prevent cancer and delay aging. Toxicol Lett 102–103, 5–18.

    PubMed  Google Scholar 

  • Ames BN, Gold LS (2000). Paracelsus to parascience: the environmental cancer distraction. Mutat Res 447, 3–13.

    CAS  PubMed  Google Scholar 

  • Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A et al. (2003). Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from caloric intake. Proc Natl Acad Sci USA 100, 6216–6220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attaran A, Maharaj R (2000). DDT for malaria control should not be banned. Br Med J 321, 1403–1404.

    CAS  Google Scholar 

  • Blardi P, De Lalla A, Volpi L, Di Perri T (1999). Stimulation of endogenous adenosine release of oral administration of quercetin and resveratrol in man. Drugs Exp Clin Res 25, 105–110.

    CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574.

    PubMed  Google Scholar 

  • Bodner KM, Collins JJ, Bloemen LJ, Carson ML (2003). Cancer risk for chemical workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Occup Environ Med 60, 672–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandes LJ (2005). Hormetic effects of hormones, antihormones, and antidepressants on cancer cell growth in culture: in vivo correlates. Crit Rev Toxicol 35, 587–592.

    CAS  PubMed  Google Scholar 

  • Branham SE (1929). The effects of certain chemical compounds upon the course of gas production by Baker's yeast. J Bacteriol 18, 247–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ (1999). Evidence that hormesis represents an ‘overcompensation’ response to a disruption in homeostasis. Ecotoxicol Environ Saf 42, 135–137.

    Google Scholar 

  • Calabrese EJ (2001). Apoptosis: Biphasic dose responses. Crit Rev Toxicol 31 (4&5), 607–613.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2004). Hormesis: from marginalization to mainstream A case for hormesis as the default dose–response model in risk assessment. Toxicol Appl Pharmacol 197, 125–136.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2005a). The hormetic challenge. Presentation at the 2005 BELLE Conference. University of Massachusetts, Amherst, MA.

  • Calabrese EJ (2005b). Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 35, 463–582.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2005c). Hormetic dose–response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35, 89–295.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (1997). The dose determines the stimulation (and poison): development of a chemical hormesis database. Int J Toxicol 16, 545–559.

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001a). Agonist concentration gradients as a generalizable regulatory implementation strategy. Crit Rev Toxicol 31, 471–473.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001b). The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 62, 330–338.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002). Defining hormesis. Hum Exp Toxicol 21, 91–97.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003a). The hormetic dose response model is more common than the threshold model in toxicology. Toxicol Sci 71, 246–250.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003b). Hormesis: the dose–response revolution. Ann Rev Pharmacol Toxicol 43, 175–197.

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003c). Ethanol and hormesis. Crit Rev Toxicol 33 (3&4), 407–424.

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain R (2004). The hormetic database: an overview. Toxicol Appl Pharmacol 202, 289–300.

    Google Scholar 

  • Calabrese EJ, Staudenmayer JW, Stanek EJ (2006). Drug development and hormesis: changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs. Curr Opin Drug Disc Dev 9, 117–123.

    CAS  Google Scholar 

  • Cole P, Trichopoulos D, Pastides H, Starr T, Mandel JS (2003). Dioxin and cancer; a critical review. Regul Toxicol Pharmacol 38, 378–388.

    CAS  PubMed  Google Scholar 

  • Collins JJ, Swaen GMH, Marsh GM, Utidjian HM, Caporossi JC, Lucas LJ (1989). Mortality patterns among workers exposed to acrylamide. J Occup Med 31, 614–617.

    CAS  PubMed  Google Scholar 

  • Committee on Medical Aspects of Food and Nutrition Policy – COMA (1998). Epidemiology of diet in relation to specific cancers. Department of Health Report and Social Subjects No. 48: Nutritional Aspects of the Development of Cancer. Stationery Office: London, England.

  • Cook RR (1994). Response in humans to low level exposure. In: Calabrese EJ (ed). Biological Effects of Low Level Exposures: Dose–Response Relationships. Lewis Publishers: Boca Raton, FL, pp 99–109.

    Google Scholar 

  • Crump KS, Canady R, Kogevinas M (2003). Meta-analysis of dioxin cancer dose response for three occupational cohorts. Environ Health Perspect 111, 681–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis HC, Hidu H (1969). Effects of pesticides on embryonic development of clams and oysters and on survival of growth of the larvae. Fish Bull 67, 393–404.

    CAS  Google Scholar 

  • Davis JM, Svendsgaard DJ (1990). U-shaped dose–response curves: their occurrence and implications for risk assessment. J Toxicol Envir Health 30, 71–83.

    CAS  Google Scholar 

  • Eaton DL, Klaassen CD (2001). Principles of toxicology. In: Klaassen CD (ed). Casarett and Doull's Toxicology: The Basic Science of Poisons, 6th edn, Chapter 2, McGraw-Hill: New York.

    Google Scholar 

  • Fan F, Wierda D, Rozman KK (1996). Effects of 2,3,7,8-tetrachorodibenzo-p-dioxin on humoral and cell-mediated immunity in Sprague–Dawley rats. Toxicology 106, 221–228.

    CAS  PubMed  Google Scholar 

  • Faulkner K, Mithen R, Williamson G (1998). Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19, 605–609.

    CAS  PubMed  Google Scholar 

  • Fontana L, Meyer TE, Klein S, Holloszy JO (2004). Long-term calorie restriction is highly effective in reducing the risk of atherosclerosis in humans. Proc Natl Acad Sci USA 101, 6659–6663.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaziano JM, Buring JE (1998). Alcohol intake, lipids, and the risks of myocardial infarction (with discussion). In: Chadwick DJ, Goode JA (eds). Alcohol and Cardiovascular Diseases. Wiley: Chichester, UK, pp 86–110.

    Google Scholar 

  • Gold LS, Sloane TH, Manley NB, Ames BN (2003). Misconceptions About the Causes of Cancer. The Fraser Institute: Vancouver BC, Canada.

    Google Scholar 

  • Gronbaek M (2004). Epidemiologic evidence for the cardioprotective effects associated with consumption of alcoholic beverages. Pathophysiology 10, 83–92.

    CAS  PubMed  Google Scholar 

  • Haley-Zitlin V, Richardson A (1993). Effect of dietary restriction on DNA damage repair and DNA damage. Mutat Res 295, 237–245.

    CAS  PubMed  Google Scholar 

  • Hallengren B, Forsgren A (1978). Effect of alcohol on chemotaxis, adherence and phagocytosis of human polymorphonuclear leucocytes. Acta Med Scand 204, 43–48.

    CAS  PubMed  Google Scholar 

  • Hayes DP (2005). The protective role of fruits and vegetables against radiation-induced cancer. Nutr Rev 63, 303–311.

    PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196.

    CAS  PubMed  Google Scholar 

  • Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC (2003). Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 54, 131–152.

    CAS  PubMed  Google Scholar 

  • Johnson TE, Bruunsgaard H (1998). Implication of hormesis for biomedical aging and research. Hum Exp Toxicol 17, 263–265.

    CAS  PubMed  Google Scholar 

  • Kaiser J (2003). Sipping from a poisoned chalice. Science 302, 376–379.

    CAS  PubMed  Google Scholar 

  • Kayajanian GM (1999). Dioxin is a systematic promoter blocker, II. Ecotoxicol Environ Saf 42, 103–109.

    CAS  PubMed  Google Scholar 

  • Kayajanian GM (2000). Southeast Asia, promotability and dioxin's relationship to cancer incidence in operation ranch hand veterans. Ecotoxicol Environ Saf 46, 125–129.

    CAS  PubMed  Google Scholar 

  • Kayajanian GM (2001). Dioxin body burdens in operation ranch hand veterans: promotion blocking and cancer causation. Ecotoxicol Environ Saf 50, 167–173.

    CAS  PubMed  Google Scholar 

  • Kayajanian GM (2002). The J-shaped dioxin dose response curve. Ecotoxicol Environ Saf 51, 1–4.

    CAS  PubMed  Google Scholar 

  • Keenan RE, Paustenbach DJ, Wenning RJ, Parsons AH (1991). Pathology reevaluation of the Kociba et al. (1978) bioassay of 2,3,7,8-TCDD: implications for risk assessment. J Toxicol Environ Health 34, 279–296.

    CAS  PubMed  Google Scholar 

  • Key T, Reeves G (1994). Organochlorines in the environment and breast cancer. Br Med J 308, 1520–1521.

    CAS  Google Scholar 

  • Klaunig JE (2005). Cancer biology and hormesis: commentary. Crit Rev Toxicol 35, 593–594.

    CAS  PubMed  Google Scholar 

  • Kociba RJ, Keyes DG, Bayer JE, Carreon RM, Wade CE, Dittenber DA et al. (1978). Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetarchorodibenzeo-dioxin in rats. Toxicol Appl Pharmacol 46, 279–303.

    CAS  PubMed  Google Scholar 

  • Kociba RJ, Schwetz BA (1982). Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Drug Metab Rev 13, 387–406.

    CAS  PubMed  Google Scholar 

  • Korthuis RJ (2004). Introduction to the special topics issue on alcohol and cardioprotection. Pathophysiology 10, 81–82.

    PubMed  Google Scholar 

  • Kushida M, Sukata T, Uwagawa S, Ozaki K, Kinoshita A, Wanibuchi H et al. (2005). Low dose DDT inhibition of hepatocarcinogenesis initiated by diethlnitrosamine in male rats: possible mechanisms. Toxicol Appl Pharmacol 208, 285–294.

    CAS  PubMed  Google Scholar 

  • Lindquist S (1986). The heat shock response. Annu Rev Biochem 55, 1151–1191.

    CAS  PubMed  Google Scholar 

  • Marsh GM, Lucas LJ, Youk AO, Schall LC (1999). Mortality patterns among workers exposed to acrylamide: 1994 follow up. Occup Environ Med 56, 181–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masoro EJ (1998). Hormesis and the antiaging action of dietary restriction. Exp Gerontol 33, 61–66.

    CAS  PubMed  Google Scholar 

  • Masoro EJ (2003). Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ 8, RE2.

    Google Scholar 

  • Mattson MP (2005). Hormesis and disease resistance: activation of cellular stress response pathways. BELLE Newsletter 13 (No. 2, Part 2), pp 6–14.

    Google Scholar 

  • Mattson MP, Chan SL, Duan W (2002). Modification of brain imaging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82, 637–672.

    CAS  PubMed  Google Scholar 

  • Melzer K, Kayser B, Pichard C (2004). Physical activity: the health benefits outweigh the risks. Curr Opin Clin Nutr Metab Care 7, 641–647.

    PubMed  Google Scholar 

  • Mertz W (1981). The essential trace elements. Science 213, 580–583.

    Google Scholar 

  • Meyer TE, Kovacs S, Ehsani AA, Klein S, Holloszy JO, Fontana L (2006). Long-term caloric restriction ameliorates the decline of diastolic functions in humans. J Am Coll Cardiol 47, 398–402.

    CAS  PubMed  Google Scholar 

  • Milner JA (2002). Strategies for cancer prevention: the role of diet. Br J Nutr 87 (Suppl 2), S265–S272.

    CAS  PubMed  Google Scholar 

  • Morse JG (1998). Agricultural implications of pesticide-induced hormesis of insects and mites. Hum Exp Toxicol 17, 266–269.

    CAS  PubMed  Google Scholar 

  • Mucci LA, Adami H-O, Wolk A (2006). Prospective study of dietary acrylamide and risk of colorectal cancer among women. Int J Cancer 118, 169–173.

    CAS  PubMed  Google Scholar 

  • Mucci LA, Dickman PW, Steineck G, Adami H-O, Augustsson K (2003a). Dietary acrylamide and cancer of the large bowel, kidney, and bladder: absence of an association in a population-based study in Sweden. Br J Cancer 88, 84–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mucci LA, Dickman PW, Steineck G, Adami H-O, Augustsson K (2003b). Reply: dietary acrylamide and cancer risk: additional data on coffee. Br J Cancer 89, 775–776.

    PubMed Central  Google Scholar 

  • Mucci LA, Linblad P, Steineck G, Adami H-O (2004). Dietary acrylamide and risk of renal cell cancer. Int J Cancer 109, 774–776.

    CAS  PubMed  Google Scholar 

  • Mucci LA, Sandin S, Balter K, Adami H-O, Magnusson C, Weiderpass E (2005). Acrylamide intake and breast cancer risk in Swedish women. J Am Med Assoc 293, 1326–1327.

    CAS  Google Scholar 

  • Parsons PA (2000). Caloric restriction, metabolic efficiency and hormesis. Hum Exp Toxicol 19, 345–347.

    CAS  PubMed  Google Scholar 

  • Paustenbach DJ, Layard MW, Wenning RJ, Keenan RE (1991). Risk assessment of 2,3,7,8-TCDD using a biologically based cancer model: a reevaluation of the Kociba et al. bioassay using 1978 and 1990 histopathology criteria. J Toxicol Environ Health 34, 11–26.

    CAS  PubMed  Google Scholar 

  • Pavuk M, Michalek JE, Ketchum NS (2006). Prostate cancer in US Air Force veterans of the Vietnam War. J Expo Anal Environ Epidemiol 16, 184–190.

    CAS  Google Scholar 

  • Pelucchi C, Galeone C, Levi F, Negri E, Franceschi S, Talamini R et al. (2006). Dietary acrylamide and human cancer. Int J Cancer 118, 467–471.

    CAS  PubMed  Google Scholar 

  • Pelucchi CS, Franceschi S, Levi F, Trichopoulos D, Bosetti C, Negri E et al. (2003). Fried potatoes and human cancer. Int J Cancer 105, 558–560.

    CAS  PubMed  Google Scholar 

  • Pohorecky LA (1977). Biphasic action of ethanol. Biobehav Rev 1, 231–240.

    CAS  Google Scholar 

  • Pool-Zobel BL, Dornacher I, Lambertz R, Knoll M, Seitz HK (2004). Genetic damage and repair in human rectal cells for biomonitoring: sex differences, effects of alcohol exposure, and susceptibilities in comparison to peripheral blood lymphocytes. Mut Res 551, 127–134.

    CAS  Google Scholar 

  • Potter JD, Steinmetz K (1996). Vegetables, fruit and phytoestrogens as preventive agents. In: Stewart BW, McGregor D and Kleihues P (eds). Principles of Chemoprevention. International Agency for Research on Cancer, Publication No. 139: Lyon, France, pp 61–90.

    Google Scholar 

  • Raji NS, Surekha A, Rao KS (1998). Improved DNA-repair parameters in PHA-stimulated peripheral blood lymphocytes of human subjects with low body mass. Mech Ageing Dev 104, 133–148.

    CAS  PubMed  Google Scholar 

  • Rattan SI (2001). Applying hormesis in aging research and therapy. Hum Exp Toxicol 20, 281–285; discussion 293–294.

    CAS  PubMed  Google Scholar 

  • Rattan SI (2004). Aging intervention, prevention, and therapy through hormesis. J Geriatrics: Biol Sci 59A, 705–709.

    Google Scholar 

  • Rehm J (2000). Alcohol consumption and mortality: what do we know and where should we go? Addiction 95, 989–995.

    CAS  PubMed  Google Scholar 

  • Rico A (2002). Chemo-defence system. C R Acad Sci III 324, 97–106.

    Google Scholar 

  • Rimm EB, Klatsky AL, Grobbee D, Stampfer MJ (1996). Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits? Br Med J 312, 731–736.

    CAS  Google Scholar 

  • Roth GS, Ingram DK, Land MA (1999). Calorie restriction in primates: will it work and how will we know? J Am Geriatrics Soc 47, 896–903.

    CAS  Google Scholar 

  • Safe S, Wargowich MJ, Lamartiniere CA, Mukhtar H (1999). Forum: symposium on mechanisms of action of naturally occurring anticarcinogens. Toxicol Sci 52, 1–8.

    CAS  PubMed  Google Scholar 

  • Sato M, Fraga C, Das D (2004). Induction of the expression of cardioprotective proteins after mild-to-moderate consumption of alcohol. Pathophysiology 10, 139–148.

    CAS  PubMed  Google Scholar 

  • Sauvaget C, Kasagi F, Waldren C (2004). Dietary factors and cancer mortality among atomic-bomb survivors. Mutat Res 551, 145–152.

    CAS  PubMed  Google Scholar 

  • Sauvaget C, Nagano J, Hayashi M, Spencer E, Shimizu Y, Allen N (2003). Vegetable and fruit intake and cancer mortality in the Hiroshima/Nagasaki life span study. Br J Cancer 88, 689–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standridge JB, Zylstra RG, Adams SM (2004). Alcohol consumption: an overview of benefits and risks. South Med J 97, 664–672.

    PubMed  Google Scholar 

  • Starr TB (2003). Significant issues raised by meta-analyses of cancer mortality and dioxin exposure. Environ Health Perspect 111, 1443–1447.

    PubMed  PubMed Central  Google Scholar 

  • Stebbing ARD (1982). Hormesis – the stimulation of growth by low levels of inhibitors. Sci Total Environ 22, 213–234.

    CAS  PubMed  Google Scholar 

  • Stebbing ARD (2003). A mechanism for hormesis – a problem in the wrong discipline. Crit Rev Toxicol 33 (3&4), 463–467.

    CAS  PubMed  Google Scholar 

  • Steinmetz KA, Potter JD (1996). Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96, 1027–1039.

    CAS  PubMed  Google Scholar 

  • Strom A, Jensen RA (1951). Mortality from circulating diseases in Norway 1940–1945. Lancet 1, 126–129.

    CAS  PubMed  Google Scholar 

  • Sukata T, Uwagawa S, Ozaki K, Ogawa M, Nishikawa T, Iwai S et al. (2002). Detailed low-dose study of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane carcinogenesis suggests the possibility of a hormetic effect. Int J Cancer 99, 112–118.

    CAS  PubMed  Google Scholar 

  • Beers MH, Berkow R (eds) (1999). The Merck Manual of Diagnosis and Therapy 17th edn, Chapters 3 and 4. Merck Research Laboratory: Whitehouse Station, NJ.

    Google Scholar 

  • Tissenbaum HA, Guarente L (2001). Increased dosage of sir-2 extends lifespan of Caenorhabditis elegans. Nature 410, 227–230.

    CAS  PubMed  Google Scholar 

  • Townsend CO (1899). The effects of ether upon the germination of seeds and spores. Bot Gaz 27, 458–466.

    Google Scholar 

  • Tuomisto J, Pekkanen J, Kiviranta H, Tukiainen E, Vartiainen T, Viluksela M et al. (2005). Dioxin cancer risk – example of hormesis? Dose–Response 3, 332–341.

    CAS  Google Scholar 

  • Tuomisto JT, Pekkanen J, Kiviranta H, Tukiainen E, Vartiainen T, Tuomisto J (2004). Soft tissue sarcoma and dioxins – a case control study. Int J Cancer 108, 893–900.

    CAS  PubMed  Google Scholar 

  • Verdery RB, Walford RL (1998). Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in Biosphere 2. Arch Intern Med 158, 900–906.

    CAS  PubMed  Google Scholar 

  • World Cancer Research Fund, American Institute for Cancer Research – AICR (1997). Food, Nutrition and the Prevention of Cancer: a Global Perspective. American Institute for Cancer Research: Washington, DC.

  • Yerkes RM, Dodson JD (1908). The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18, 459–482.

    Google Scholar 

  • Yu BP (1994). How diet influences aging process of the rat. Proc Soc Exp Biol Med 205, 97–105.

    CAS  PubMed  Google Scholar 

  • Yu BP, Chung HY (2001). Stress resistance by caloric restriction for longevity. Ann NY Acad Sci 928, 39–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to acknowledge the stakhanovite efforts and services of the staff of the William Hallock Park Memorial Public Health Library of the New York City Department of Health and Mental Health Hygiene and the technical assistance of my colleague Raymond Ford. I have no conflicts of interest that are either directly or indirectly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D P Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, D. Nutritional hormesis. Eur J Clin Nutr 61, 147–159 (2007). https://doi.org/10.1038/sj.ejcn.1602507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602507

Keywords

This article is cited by

Search

Quick links