Abstract
Objective:
Some epidemiological studies found a lower risk of cardiovascular disease among wine drinkers than among drinkers of other types of ethanol. This difference might be due to an effect of nonalcohol compounds in wine on important cardiovascular risk factors. The objective of this study was to compare the effect of red wine, nonalcohol compounds of red wine and placebo on established cardiovascular risk factors.
Design:
A parallel, four-armed intervention study.
Subjects:
A total of 69 healthy 38–74-y-old men and women.
Interventions:
Subjects were randomised to either 1: red wine (males: 300 ml/day, 38.3 g alcohol/day, female subjects: 200 ml/day, 25.5 g alcohol/day), 2: water+red grape extract tablets (wine-equivalent dose), 3: water+red grape extract tablets (half dose), or 4: water+placebo tablets for a period of 4 weeks. No other sources of alcohol or anthocyanin were allowed. Plasma high-density lipoprotein (HDL)-cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol (LDL-C), HDL-C/LDL-C-ratio, very-low-density lipoprotein (VLDL)-triacylglycerol, total cholesterol, fibrinogen, factor VII coagulant activity (FVIIc), blood pressure, and body weight were determined before and after intervention.
Results:
Wine consumption was associated with a significant 11–16% increase in fasting HDL-C and 8–15% decrease in fasting fibrinogen relative to not drinking wine. There were no significant treatment effects on fasting LDL-C, HDL-C/LDL-C-ratio, VLDL-triacylglycerol, total cholesterol, FVIIc, or blood pressure. Drinking wine was associated with relative body weight increments closely corresponding to the energy contributed by the alcohol component.
Conclusion:
Moderate red wine consumption for 4 weeks is associated with desirable changes in HDL-C and fibrinogen compared with drinking water with or without red grape extract. The impact of wine on the measured cardiovascular risk factors thus seems primarily explained by an alcohol effect. Our finding suggests that the putative difference in cardiac risk associated with wine vs other alcoholic beverages might be rather explained by other life-style confounders than by red wine contents of nonalcohol components.
Sponsorship:
This study was supported by Chr. Hansen A/S, Denmark.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Baumstark MW, Kreutz W, Berg A, Frey I & Keul J (1991): Structure of human low-density lipoprotein subfractions, determined by X-ray small angle scattering. Biochem. Biophys. Acta 1037, 48–57.
Bell JRC, Donovan JL, Donovan JL, Wong R, Waterhouse AL, German JB & Kasim-Karakas SE (2000): (+)-Catechin in plasma after ingestion of a single serving of reconstituted red wine. Am. J. Clin. Nutr. 71, 103–108.
Burr ML, Fehily AM, Butland BK, Bolton CH & Eastham RD (1986): Alcohol and high-desity-lipoprotein cholesterol: a randomized controlled trial. Br. J. Nutr. 56, 81–86.
Caccetta RA-A, Croft KD, Beilin LJ & Puddey IB (2000): Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr. 71, 67–74.
Carbonneau M-A, Léger CL, Monnier L, Bonnet C, Michel F, Fouret G, Dedieu F & Descomps B (1997): Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu2+-oxidizability: possible explanation by phenolic location. Eur. J. Clin. Nutr. 51, 682–690.
Criqui MH & Ringel BL (1994): Does diet or alcohol explain the French paradox? Lancet 344, 1719–1923.
Day AP, Kemp HJ, Bolton C, Hartog M & Stansbie D (1997): Effect of concentrated red grape juice consumption on serum antioxidant capacity and low-density lipoprotein oxidation. Ann. Nutr. Metab. 41, 353–357.
de Rijke YB, Demacker PNM, Assen NA, Sloots LM, Katan MB & Stalenhoef AFH (1996): Red wine consumption does not affect oxidazability of low-density lipoproteins in volunteers. Am. J. Clin. Nutr. 63, 329–334.
Estruch R, Sacanella E, Badia E, Antunez E, Nicolas JM, Fernandez-Rotilio D, de Gaetano G, Rubin E & Urbano-Marquez A (2004): Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis 175, 117–123.
Frank T, Netzel M, Strass G, Bitsch R & Bitsch I (2003): Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can. J. Physiol. Pharmacol. 81, 423–435.
Frankel EN, Kanner J, German JB, Parks E & Kinsella JE (1993): Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341, 454–457.
Goldberg DM, Garovic-Kocic V, Diamandis EP & Pace-Asciak CR (1996): Wine: does the colour count? Clin. Chim. Acta 246, 183–193.
Grønbæk M, Deis A, Sørensen TIA, Becker U, Schnohr P & Jensen G (1995): Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 310, 1165–1169.
Grønbæk M, Iversen L, Olsen J, Becker PU, Hardt F & Sørensen TIA (1997): Sensible drinking limits. Ugeskr. Læger 159, 5939–5945.
Grønbæk M, Becker U, Johansen D, Gottschau A, Schnohr P, Hein HO, Jensen G & Sorensen TI (2000): Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann. Int. med. 133, 411–419.
Hankey CR, Lean ME, Lowe GD, Rumley A & Woodward M (2002): Effects of moderate weight loss on anginal symptoms and indices of coagulation and fibrinolysis in overweight pationts with angina pectoris. Eur. J. Clin. Nutr. 56, 1039–1045.
Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A & Aviram M (1997): Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler. Thromb. Vasc. Biol. 17, 2744–2752.
Klatsky AL, Friedman GD, Siegelaub AB & Gerard MJ (1977): Alcohol consumption and blood pressure Kaiser-Permanente Multiphasic Health Examination data. N. Engl. J. Med. 296, 1194–1200.
Klatsky AL & Armstrong MA (1993): Alcoholic beverage choice and risk of coronaty artery disease mortality: do red wine drinkers fare best? Am. J. Cardiol. 71, 467–469.
Langer R, Criqui MH & Reed DM (1992): Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease. Circulation 85, 910–915.
Leger ASSt, Cochrane AL & Moore F (1979): Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1, 1017–1020.
Leighton F, Cuevas A, Guasch V, Perez DD, Strobel P, San Martin A, Urzua U, Diez MS, Foncea R, Castillo O, Mizon C, Espinoza MA, Urquiaga I, Rozowski J, Maiz A & Germain A (1999): Plasma polyphenols and antioxidants, oxidative DNA damage, endothelial function in a diet and wine intervention study in humans. Drugs Exp. Clin. Res. 25, 133–141.
Mennen LI, Balkau B, Vol S, Cacès E & Eschwège E (1999): A possible link between alcohol consumption and cardiovascular disease? Arterioscler. Thromb. Vasc. Biol. 19, 887–892.
Mezzano D, Leighton F, Martinez C, Marshall G, Cuevas A, Castillo O, Panes O, Munoz B, Perez DD, Mizon C, Rozowski J, San Martin A & Pereira J (2001): Complementary effects of mediterranean diet and moderate red wine intake on haemostatic cardiovascular risk factors. Eur. J. Clin. Nutr. 55, 444–451.
Miyagi Y, Miwa K & Inoue H (1997): Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am. J. Cardiol. 80, 1627–1631.
Pellegrini N, Pareti FI, Stabile F, Brusamolino A & Simonetti P (1996): Effects of moderate consumption of red wine on platelet aggregation and haemostatic variables in healthy volunteers. Eur. J. Clin. Nutr. 50, 209–213.
Pikaar NA, Wedel M, van der Beek EJ, van Dokkum W, Kempen HJ, Kluft C, Ockhuizen T & Hermus Rj (1987): Effects of moderate alcohol consumption on platelet aggregation, fibrinolysis, and blood lipids. Metabolism 36, 538–543.
Renaud S & de Lorgeril M (1992): Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339, 1523–1526.
Rimm EB, Klatsky A, Grobbee D & Stampfer MJ (1996): Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits? BMJ 312, 731–736.
Rimm EB, Williams P, Fosher K, Criqui M & Stampfer MJ (1999): Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319, 1523–1528.
Royal College of Physicians (1987): A great and growing evil—the medical consequences of alcohol abuse. Report of a working party. London: Tavistoc.
Stein JH, Keevil JG, Wiebe DA, Aeschlimann S & Folts JD (1999): Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100, 1050–1055.
Theobald H, Bygren LO, Carstensen J & Engfeldt P (2000): A moderate intake of wine is associated with reduced total mortality and reduced mortality from cardiovascular disease. J. Stud. Alcohol 61, 652–656.
Tjønneland A, Grønbæk M, Stripp C & Overvad K (1999): Wine intake and diet in a random sample of 48763 Danish men and women. Am. J. Clin. Nutr. 69, 49–54.
Van der Gaag MS, Sierksma A, Schaafsma G, van Tol A, Geelhoed-Mieras T, Bakker M & Hendriks HF (2000): Moderate alcohol consumption and changes in postprandial lipoproteins of premenopausal and postmenopausal women: a diet-controlled, randomized intervention study. J. Womens Health Gend. Based Med. 9, 607–616.
Wannamethee SG & Shaper AG (1999): Type of alcoholic drink and risk of major coronary heart disease events and all-cause mortality. Am. J. Public Health 89, 685–690.
Wilkins J, Gallimore JR, Moore EG & Pepys MB (1998): Rapid automated high sensitivity enzyme immunoassay of C-reactive protein. Clin. Chem. 44, 1358–1361.
Williams PT (2004): The relationships of vigorous exercise, alcohol, and adiposity and high high-density lipoprotein-cholesterol levels. Metabolism 53, 700–709.
Young JF, Dragsted LO, Daneshvar B, Lauridsen ST, Hansen M & Sandström B (2000): The effect of grape-skin extract on oxidative status. Br. J. Nutr. 84, 505–513.
Author information
Authors and Affiliations
Corresponding author
Additional information
Guarantors: P Marckmann and M Grønbæk.
Contributors: ASH, PM and MG initiated the formulation of the primary study hypothesis, discussed the core ideas, designed the protocol and wrote the paper. ASH collected and analysed all data. LOD, I-LFN and SEN discussed the core ideas, performed the biochemical analysis and edited the paper.
Rights and permissions
About this article
Cite this article
Hansen, A., Marckmann, P., Dragsted, L. et al. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur J Clin Nutr 59, 449–455 (2005). https://doi.org/10.1038/sj.ejcn.1602107
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.ejcn.1602107
Keywords
This article is cited by
-
Effects of Alcohol Reduction Interventions on Blood Pressure
Current Hypertension Reports (2022)
-
Anthocyanin supplementation at different doses improves cholesterol efflux capacity in subjects with dyslipidemia—a randomized controlled trial
European Journal of Clinical Nutrition (2021)
-
Wine and Health–New Evidence
European Journal of Clinical Nutrition (2019)
-
Do grape polyphenols improve metabolic syndrome components? A systematic review
European Journal of Clinical Nutrition (2017)
-
Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity
Nutrition & Metabolism (2016)