Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy

Abstract

Objective: To study the changes of plasma fatty acids and lipophilic vitamins during normal pregnancy.

Design: Plasma fatty acid profile and the concentration of carotenoids, tocopherols and retinol were measured in healthy women at the first and third trimesters of pregnancy, at delivery, and in cord blood plasma.

Results: Maternal plasma cholesterol and triglycerides increased from the first to the third trimester of gestation, while free fatty acids progressively increased from the first trimester through the third trimester to delivery, suggesting an enhanced lipolytic activity. Plasma levels of α- and γ-tocopherols, lycopene and β-carotene also progressively increased with gestation, but values in cord blood plasma were lower than in mothers at delivery. Retinol levels declined with gestational time and values in cord blood plasma were even lower. The proportion of total saturated fatty acids increased with gestation, and it further increased in cord blood plasma. Total n-9 fatty acids remained stable throughout pregnancy, and slightly declined in cord blood plasma, the change mainly corresponding to oleic acid. Total n-6 fatty acids declined with gestation and further decreased in cord blood plasma, and a similar trend was found for linoleic acid. However, arachidonic acid declined in women at the third trimester and at delivery as compared to the first trimester, but was enhanced in cord blood plasma. The proportion of total n-3 fatty acids remained stable throughout pregnancy at the expense of decreased α-linolenic acid at delivery but enhanced eicosapentaenoic acid, with small changes in docosahexaenoic acid. The proportion of these n-3 fatty acids was similar in cord blood plasma and maternal plasma at delivery.

Conclusions: Owing to the different placental transfer mechanisms and fetal capability to metabolize some of the transferred fatty acids and lipophilic vitamins, the fetus preserves the essential compounds to assure their appropriate availability to sustain its normal development and to protect itself from the oxidative stress of extrauterine life.

Sponsorship: The studies reported herein have been carried out with financial support from the Commission of the European Communities, specific RTD programme ‘Quality of Life and Management of Living Resources’, QLK1-2001-00138 ‘Influence of Dietary Fatty Acids on the Pathophysiology of Intrauterine Foetal Growth and Neonatal Development’ (PeriLip). It does not necessarily reflect its views and in no way anticipates the Commission's future policy in this area.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  • Al MDM, Hornstra G, Van der Schouw YT, Bulstra-Ramakers MTEW & Huisjes HJ (1990): Biochemical EFA status of mothers and their neonates after normal pregnancy. Early Hum. Dev. 24, 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Al MDM, Van Houwelingen AC, Kester ADM, Hasaart THM, De Jong AEP & Hornstra G (1995): Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 74, 55–68.

    Article  CAS  PubMed  Google Scholar 

  • Amusquivar E, Rupérez FJ, Barbas C & Herrera E (2000): Low arachidonic acid rather than α-tocopherol is responsible for the delayed postnatal development in offspring of rats fed fish oil instead of olive oil during pregnancy and lactation. J. Nutr. 130, 2855–2865.

    Article  CAS  PubMed  Google Scholar 

  • Berghaus TM, Demmelmair H & Koletzko B (2000): Essential fatty acids and their long-chain polyunsaturated metabolites in maternal and cord plasma triglycerides during late gestation. Biol. Neonate 77, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Brody T (1994): Vitamins, In Nutritional Biochemistry, ed T Brody, pp 355–484. San Diego: Academic Press, Inc.

    Google Scholar 

  • Burton GW, Traber MG, Acuff RV, Walters DN, Kayden H, Hughes L & Ingold KU (1998): Human plasma and tissue α-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. Am. J. Clin. Nutr. 67, 669–684.

    Article  CAS  PubMed  Google Scholar 

  • Campbell FM, Gordon MJ & Dutta-Roy AK (1996): Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes. Mol. Cell. Biochem. 155, 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Carnielli VP, Wattimena DH, Luijendijk IHT, Boerlage A, Degenhart HJ & Sauer PJJ (1996): The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acid from linoeic and linolenic acid. Pediatr. Res. 40, 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Cetin I, Giovannini N, Alvino G, Agostoni C, Gionannini M & Pardi G (2002): Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationship. Pediatr. Res. 52, 750–755.

    Article  CAS  PubMed  Google Scholar 

  • Clagett-Dame M & DeLuca HF (2002): The role of vitamin A in mammalian reproduction and embryonic development. Ann. Rev. Nutr. 22, 347–381.

    Article  CAS  Google Scholar 

  • Clagett-Dame M & Plum LA (1997): Retinoid-regulated gene expression in neural development. Crit. Rev. Eukaryot. Gene Exp. 7, 299–342.

    Article  CAS  Google Scholar 

  • Connor WE, Lowensohn R & Hatcher L (1996): Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31, S183–S187.

    Article  CAS  PubMed  Google Scholar 

  • Crastes de Paulet P, Sarda P, Boulot P & Crastes de Paulet A (1992): Fatty acids blood composition in foetal and maternal plasma, In Essential Fatty Acids and Infant Nutrition, eds J Ghisolfi & G Putet, pp 65–77. Paris: John Libbey Eurotext.

    Google Scholar 

  • Crawford MA, Hassan AG, Williams G & Whitehouse WL (1976): Essential fatty acids and fetal brain growth. Lancet I, 452–453.

    Article  Google Scholar 

  • Dancis J, Levitz M, Katz J, Wilson D & Blaner WS (1992): Transfer and metabolism of retinol by the perfused human placenta. Pediatr. Res. 32, 195–199.

    Article  CAS  PubMed  Google Scholar 

  • De Vriese SR, Dhont M & Christophe AB (2001): Oxidative stability of low density lipoproteins and vitamin E levels increase in maternal blood during normal pregnancy. Lipids 36, 361–366.

    Article  CAS  PubMed  Google Scholar 

  • Demmelmair H, Schenck U, Behrendt E, Sauerwald T & Koletzko B (1995): Estimation of arachidonic acid synthesis in full term neonates using natural variation of 13C-abundance. J. Pediatr. Gastroent. Nutr. 21, 31–36.

    Article  CAS  Google Scholar 

  • Dison PJ, Lockitch G, Halstead AC, Pendray MR, Macnab A & Wittmann BK (1993): Influence of maternal factors on cord and neonatal plasma micronutrient levels. Am. J. Perinatol. 10, 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop M & Court JM (1978): Lipogenesis in developing human adipose tissue. Early Hum. Dev. 2, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Dutta-Roy AK (1994): Insulin mediated processes in platelets, monocytes/macrophages and erytrocytes: effects of essential fatty acid metabolism. Prostagland. Leukotr. Essent. Fatty Acids 51, 385–399.

    Article  CAS  Google Scholar 

  • Dutta-Roy AK (2000): Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin. Nutr. 71, 315S–322S.

    Article  CAS  PubMed  Google Scholar 

  • Elinder LS & Walldius G (1992): Simultaneous measurement of serum probucol and lipid-soluble antioxidants. J. Lipid Res. 33, 131–137.

    CAS  Google Scholar 

  • Elliot K & Knight J (1972): Lipids, Malnutrition and the Developing Brain. A Ciba Foundation Symposium. Amsterdam: Elsevier Excerpta Medica.

    Book  Google Scholar 

  • Elliott JA (1975): The effect of pregnancy on the control of lipolysis in fat cells isolated from human adipose tissue. Eur. J. Clin. Invest. 5, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Fidanza F, Gentile MG & Porrini M (1995): A self-administered semiquantitative food-frequency questionnaire with optical reading and its concurrent validation. Eur. J. Epidem. 11, 163–170.

    Article  CAS  Google Scholar 

  • Folch J, Lees M & Sloane Stanley GH (1957): A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 22, 24–36.

    Google Scholar 

  • Friedman Z, Danon A, Lamberth EL & Mann WJ (1978): Cord blood fatty acid composition in infants and in their mothers during the third trimester. J. Pediatr. 92, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Gazala E, Sarov B, Hershkovitz E, Edvardson S, Sklan D, Katz M, Friger M & Gorodischer R (2003): Retinol concentration in maternal and cord serum: its relation to birth weight in healthy mother-infant pairs. Early Hum. Dev. 71, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Godel JC (1989): Vitamin E status of northen Canadian newborns: relation of vitamin E to blood lipids. J. Clin. Nutr. 50, 375–380.

    Article  CAS  Google Scholar 

  • Greiner RCS, Zhang Q, Goodman KJ, Giussani DA, Nathanielsz PW & Brenna JT (1996): Linoleate, α-linolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys. J. Lipid Res. 37, 2675–2686.

    CAS  Google Scholar 

  • Haggarty P (2002): Placental regulation of fatty acid delivery and its effect on fetal growth—a review. Placenta 23, S28–S38.

    Article  PubMed  Google Scholar 

  • Haggarty P, Page K, Abramovich DR, Ashton J & Brown D (1997): Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 18, 635–642.

    Article  CAS  PubMed  Google Scholar 

  • Handelman GJ, Epstein WL, Peerson J, Spiegelman D, Machlin LJ & Dratz EA (1994): Human adipose α-tocopherol and gamma-tocopherol kinetics during and after 1 y of α-tocopherol supplementation. Am. J. Clin. Nutr. 59, 1025–1032.

    Article  CAS  PubMed  Google Scholar 

  • Herrera E (2002): Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—A review. Placenta 23, S9–S19.

    Article  PubMed  Google Scholar 

  • Hornstra G, Al MDM, Van Houwelingen AC & Foreman-van Drongelen MMHP (1995): Essential fatty acids in pregnancy and early human development. Eur. J.Obstet. Gynecol. Reprod. Biol. 61, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Christen S, Shigenaga MK & Ames BN (2001): Y-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74, 714–722.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L (1998): Vitamin E nutrition in the fetus and newborn, In Fetal and neonatal physiology, eds RA Polin, WW Fox, 2nd edn, pp 425–442. Philadelphia: W.B. Saunders Co.

    Google Scholar 

  • Kaempf-Rotzoll DE, Igarashi K, Aoki J, Jishage K, Suzuki H, Tamai H, Linderkamp O & Arai H (2002): α-tocopherol transfer protein is specifically localized at the implantation site of pregnant mouse uterus. Biol. Reprod. 67, 599–604.

    Article  CAS  PubMed  Google Scholar 

  • Kardinaal AFM, Kok FJ, Ringstad J, Gomez-Aracena J, Mazaev VP, Kohlmeier L, Martin BC, Aro A, Kark JD, Delgado-Rodriguez M, Riemersma RA, Van't Veer P, Huttunen JK & Martin-Moreno JM (1993): Antioxidants in adipose tissue and risk of myocardial infarction: the EURAMIC study. Lancet 342, 1379–1384.

    Article  CAS  PubMed  Google Scholar 

  • Kiely M, Cogan PF, Kearney PJ & Morrissey PA (1999): Concentrations of tocopherols and carotenoids in maternal and cord blood plasma. Eur. J. Clin. Nutr. 53, 711–715.

    Article  CAS  PubMed  Google Scholar 

  • Leger CL, Dumontier C, Fouret G, Boulot P & Descomps B (1998): A short-term supplementation of pregnant women before delivery does not improve significantly the vitamin E status of neonates, low efficiency of the vitamin E placental transfer. Int. J. Vitam. Nutr. Res. 68, 293–299.

    CAS  PubMed  Google Scholar 

  • McCaffery P & Dräger UC (2000): Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev. 11, 233–249.

    Article  CAS  PubMed  Google Scholar 

  • Min Y, Ghebremeskel K, Crawford MA, Nam JH, Kim A, Lee IS & Suzuki H (2001): Maternal-fetal gradient n-6 and n-3 polyunsaturated fatty acids gradient in plasma and red cell phospholipids. Int. J. Vitam. Nutr. Res. 71, 286–292.

    Article  CAS  PubMed  Google Scholar 

  • Mino M, Kitagawa M & Nakagawa S (1985): Red blood cell tocopherol concentrations in a normal population of Japanese children and premature infants in relation to the assessment of vitamin E status. Am. J. Clin. Nutr. 41, 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Moriss FH, Boyd RDH & Mahendran D (1994): Placental transport, In The Physiology of Reproduction, eds E Knobil & JD Neill, pp 813–861. New York: Raven Press.

    Google Scholar 

  • Morris JM, Gopaul NK, Endresen MJR, Knight M, Linton EA, Dhir S, Änggård EE & Redman CWG (1998): Circulating markers of oxidative stress are raised in normal pregnancy and pre-eclampsia. Br. J. Obstetr. Gynaecol. 105, 1195–1199.

    Article  CAS  Google Scholar 

  • Muller DPR (1994): Vitamin E and other antioxidants in neurological function and disease, In Natural Antioxidants in Human Health and Disease, ed B Fris, pp 539–547. San Diego, London: Academic Press, Inc.

    Google Scholar 

  • Olson JA (2001): Vitamin A, In Handbook of Vitamins, eds Bucker RB, Suttie JW, McCormick DB & Machlin LJ, 3rd edn, pp 1–50. New York, Basel: Marcel-Dekker, Inc.

    Google Scholar 

  • Otto SJ, van Houwelingen AC, Antal M & Manninen M (1997): Maternal and neonatal essential fatty acids status in phospholipids: an international comparative study. Eur. J. Clin. Nutr. 51, 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Salem Jr N, Wegher B, Mena P & Uauy R (1996): Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci. USA 93, 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Hagiwara K, Arai H & Inoue K (1991): Purification and characterization of the α-tocopherol protein from rat liver. FEBS Lett. 288, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE & Heird WC (1997): Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants. Pediatr. Res. 41, 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Schenker S, Yang Y, Perez A, Acuff RV, Papas AM, Henderson G & Lee MP (1998): Antioxidant transport by the human placenta. Clin. Nutr. 17, 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Sellmayer A, Danesch U & Weber PC (1996): Effects of polyunsaturated fatty acids on growth related early gene expression and cell growth. Lipids 31, S37–S40.

    Article  CAS  PubMed  Google Scholar 

  • Su HM, Corso TN, Nathanielsz PW & Brenna JT (1999): Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J. Lipid Res. 40, 1304–1311.

    CAS  PubMed  Google Scholar 

  • Su HM, Huang MC, Saad NMR, Nathanielsz PW & Brenna JT (2001): Fetal baboons convert 18:3n-3 to 22:6n-3 in vivo: a stable isotope tracer study. J. Lipid Res. 42, 581–586.

    CAS  PubMed  Google Scholar 

  • Szitanyi P, Koletzko B, Mydlilova A & Demmelmair H (1999): Metabolism of 13C-labeled linoleic acid in newborn infants during the first week of life. Pediatr. Res. 45, 669–673.

    Article  CAS  PubMed  Google Scholar 

  • Toescu V, Nuttall SL, Martin U, Kendall MJ & Dunne F (2002): Oxidative stress and normal pregnancy. Clin. Endocrinol. 57, 609–613.

    Article  CAS  Google Scholar 

  • Torma H & Vahlquist A (1986): Uptake of vitamin A and retinol-binding protein by human placenta in vitro. Placenta 7, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Traber MG & Arai H (1999): Molecular mechanisms of vitamin E transport. Ann. Rev. Nutr. 19, 343–355.

    Article  CAS  Google Scholar 

  • Uauy-Dagach R & Mena P (1995): Nutritional role of omega-3 fatty acids during the perinatal period. Clin. Perinatol. 22, 157–175.

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Mena P, Wegher B, Nieto S & Salem Jr N (2000): Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr. Res. 47, 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Uotila JT, Tuimala R, Aarnio T, Pyykko K & Ahotupa M (1991): Lipid peroxidation products, selenium-dependent glutathione peroxidase and vitamin E in normal pregnancy. Eur. J. Obstetr. Gynecol. Reprod. Biol. 42, 95–100.

    Article  CAS  Google Scholar 

  • Van Houwelingen AC, Sorensen JD, Hornstra G, Simonis MMG, Boris J, Olsen SF & Secher NJ (1995): Essential fatty acid status in neonates after fish-oil supplementation during late pregnancy. Br. J. Nutr. 74, 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Yeum KJ, Ferland G, Patry J & Russell RM (1998): Relationship of plasma carotenoids, retinol and tocopherols in mothers and newborn infants. J. Am. Coll. Nutr. 17, 442–447.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the excellent technical assistance of Milagros Morante and to thank Mr Brian Crilly, for his editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Herrera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herrera, E., Ortega, H., Alvino, G. et al. Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy. Eur J Clin Nutr 58, 1231–1238 (2004). https://doi.org/10.1038/sj.ejcn.1601954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601954

Keywords

  • fatty acids profile
  • α-tocopherol
  • γ-tocopherol
  • β-carotene
  • lycopene
  • retinol
  • human pregnancy
  • cord blood plasma

This article is cited by

Search

Quick links