Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Communication
  • Published:

Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women


Objective: To investigate the impact of irregular meal frequency on circulating lipids, insulin, glucose and uric acid concentrations which are known cardiovascular risk factors.

Design: A randomised crossover dietary intervention study.

Setting: Nottingham, UK—Healthy free-living women.

Subjects: A total of nine lean healthy women aged 18–42 y recruited via advertisement.

Intervention: A randomised crossover trial with two phases of 14 days each. In Phase 1, subjects consumed their normal diet on either 6 occasions per day (regular) or by following a variable meal frequency (3–9 meals/day, irregular). In Phase 2, subjects followed the alternative meal pattern to that followed in Phase 1, after a 2-week (wash-out) period. Subjects were asked to come to the laboratory after an overnight fast at the start and end of each phase. Blood samples were taken for measurement of circulating glucose, lipids, insulin and uric acid concentrations before and for 3 h after consumption of a high-carbohydrate test meal.

Results: Fasting glucose and insulin values were not affected by meal frequency, but peak insulin and AUC of insulin responses to the test meal were higher after the irregular compared to the regular eating patterns (P<0.01). The irregular meal frequency was associated with higher fasting total (P<0.01) and LDL (P<0.05) cholesterol.

Conclusion: The irregular meal frequency appears to produce a degree of insulin resistance and higher fasting lipid profiles, which may indicate a deleterious effect on these cardiovascular risk factors.

Sponsorship: The Ministry of Health and Medical Education, IR Iran.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others


  • Arnold L, Ball M, Duncan A & Mann J (1993): Effect of isoenergetic intake of three or nine meals on plasma lipoproteins and glucose metabolism. Am. J. Clin. Nutr. 57, 446–451.

    Article  CAS  Google Scholar 

  • Beck A (1969): Depression inventory—clinical, Experimental, and Theoretical Aspects, pp 333–335. London: Staples Press.

    Google Scholar 

  • Burstein M, Scholnick H & Morfin R (1970): Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 11, 583–595.

    CAS  PubMed  Google Scholar 

  • Despres J, Lamarche B, Mauriege P, Cantin B, Dagenais G, Moorjani S & Lupien P (1996): Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 11, 952–957.

    Article  Google Scholar 

  • Edelstein S, Barrett-Connor E, Wingard D & Cohn B (1992): Increased meal frequency associated with decreased cholesterol concentrations; Rancho Bernardo, CA, 1984–1987. Am. J. Clin. Nutr. 55, 664–669.

    Article  CAS  Google Scholar 

  • Fabry P, Fodor J, Hejl Z, Braun T & Zvolankova K (1964): The frequency of meals: its relation to overweight, hypercholesterolaemia, and decreased glucose tolerance. Lancet II, 614–615.

    Article  Google Scholar 

  • Fabry P, Fodor J, Hejl Z, Geizerova H & Balcarova O (1968): Meal frequency and ischaemic heart-disease. Lancet 27, 190–191.

    Article  Google Scholar 

  • Fábry P, Hejda S, Cerný K, Osancová K & Pechar J (1966): Effect of meal frequency in schoolchildren. Changes in weight–height proportion and skinfold thickness. Am. J. Clin. Nutr. 18, 358–361.

    Article  Google Scholar 

  • Friedewald W, Levy R & Fredrickson D (1972): Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502.

    CAS  Google Scholar 

  • Garner D & Garfinkel P (1979): The Eating Attitudes Test: an index of the symptoms of anorexia nervosa. Psychol. Med. 9, 273–279.

    Article  CAS  Google Scholar 

  • Grundy S (1998): Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am. J. Cardiol. 26, 18B–25B.

    Article  Google Scholar 

  • Grundy SM, Balady GJ, Criqui MH, Fletcher G, Greenland P, Hiratzka LF, Houston-Miller N, Kris-Etherton P, Krumholz HM, LaRosa J, Ockene IS, Pearson TA, Reed J, Washington R & Smith Jr SC (1998): Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA task force on risk reduction. Circulation 97, 1876–1887.

    Article  CAS  Google Scholar 

  • Gwinup G, Bryon R, Rousch W, Kruger F & Hamwi G (1963): Effect of nibbling versus gorging on serum lipids in man. Am. J. Clin. Nutr. 13, 209–213.

    Article  CAS  Google Scholar 

  • Hoglund D, Samuelson G & Mark A (1998): Food habits in Swedish adolescents in relation to socioeconomic conditions. Eur. J. Clin. Nutr. 52, 784–789.

    Article  CAS  Google Scholar 

  • Jenkins D, Khan A, Jenkins A, Illingworth R, Pappu A, Wolever T, Vuksan V, Buckley G, Rao A, Cunnane S, Brighenti F, Hawkins M, Abdolell M, Corey P, Patten R & Josse RG (1995): Effect of nibbling versus gorging on cardiovascular risk factors: serum uric acid and blood lipids. Metabolism 44, 549–555.

    Article  CAS  Google Scholar 

  • Jenkins D, Wolever T, Vuksan V, Brighenti F, Cunnane S, Rao A, Jenkins A, Buckley G, Patten R, Singer W, Corey P & Josse RG (1989): Nibbling versus gorging: metabolic advantages of increased meal frequency. N. Engl. J. Med. 5, 929–934.

    Article  Google Scholar 

  • Kageyama N (1971): A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin. Chim. Acta. 31, 421–426.

    Article  CAS  Google Scholar 

  • Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D & Turner R (1985): Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419.

    Article  CAS  Google Scholar 

  • McGuire E, Helderman J, Tobin J, Andres R & Berman M (1976): Effects of arterial versus venous sampling on analysis of glucose kinetics in man. J. Appl. Physiol. 41, 565–573.

    Article  CAS  Google Scholar 

  • Murata M (2000): Secular trends in growth and changes in eating patterns of Japanese children. Am. J. Clin. Nutr. 72, 1379S–1383S.

    Article  CAS  Google Scholar 

  • Samuelson G (2000): Dietary habits and nutritional status in adolescents over Europe. An overview of current studies in the Nordic countries. Eur. J. Clin. Nutr. 54, S21–S28.

    Article  Google Scholar 

  • Solberg L & Strong J (1983): Risk factors and atherosclerotic lesions. A review of autopsy studies. Arteriosclerosis 3, 187–198.

    Article  CAS  Google Scholar 

  • Trivedi R, Rebar L, Berta E & Stong L (1978): New enzymatic method for serum uric acid at 500 nm. Clin. Chem. 24, 1908–1911.

    CAS  PubMed  Google Scholar 

  • Waring W, Webb D & Maxwell S (2000): Uric acid as a risk factor for cardiovascular disease. Q. J. Med. 93, 707–713.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to H R Farshchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farshchi, H., Taylor, M. & Macdonald, I. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr 58, 1071–1077 (2004).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links