Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mild dehydration, vasopressin and the kidney: animal and human studies

Abstract

Water balance depends essentially on fluid intake and urine excretion. Mild dehydration and the consequent hypertonicity of the extracellular fluid induce an increase in vasopressin secretion, thus stimulating urine concentrating processes and the feeling of thirst. The osmotic threshold for the release of vasopressin is lower than that for thirst and also shows appreciable individual variation. Sustained high levels of vasopressin and low hydration induce morphological and functional changes in the kidney. However, they could also be risk factors in several renal disorders, such as chronic renal failure, diabetic nephropathy and salt-sensitive hypertension.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  • Anastasio P, Cirillo M, Spitali L, Frangiosa A, Pollastro RM & DeSanto NG (2001): Level of hydration and renal function in healthy humans. Kidney Int. 60, 748–756.

    Article  CAS  Google Scholar 

  • Andersen LJ, Andersen JL, Schütten HJ, Warberg J & Bie P (1990): Antidiuretic effect of subnormal levels of arginine vasopressin in normal humans. Am. J. Physiol. 259, R53–R60.

    CAS  PubMed  Google Scholar 

  • Bagnasco SM, Peng T, Janech MG, Karakashian A & Sands JM (2001): Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. Am. J. Physiol. Renal Physiol. 281, F400–F406.

    Article  CAS  Google Scholar 

  • Bankir L (2001): Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovas. Res. 51, 372–390.

    Article  CAS  Google Scholar 

  • Bankir L, Bardoux P & Ahloulay M (2001): Vasopressin and diabetes mellitus. Nephron 87, 8–18.

    Article  CAS  Google Scholar 

  • Bankir L & Kriz W (1995): Adaptation of the kidney to protein intake and to urine concentrating activity: similar consequences in health and CRF. Kidney Int. 47, 7–24.

    Article  CAS  Google Scholar 

  • Bankir L, Niesor R & Bouby N (1995): Sodium excretion is impaired by high urinary concentration. FASEB J. 9, A5.

    Google Scholar 

  • Bankir L, Pouzet B, Choukroun G, Bouby N, Schmitt F & Mallie JP (1998): Concentrer l'urine ou excréter le sodium: deux exigences parfois contradictoires. Néphrologie 19, 203–209.

    CAS  PubMed  Google Scholar 

  • Bankir L & Trinh-Trang-Tan MM (2000): Renal urea transporters. Direct and indirect regulation by vasopressin. Exp. Physiol. 85, 243S–252S.

    Article  CAS  Google Scholar 

  • Bardoux P, Bruneval P, Heudes D, Bouby N & Bankir L (2003): Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in the rat. Nephrol. Dial. Transplant. 18, 1755–1763.

    Article  CAS  Google Scholar 

  • Bardoux P, Martin H, Ahloulay M, Schmitt F, Bouby N, Trinh-Trang-Tan MM & Bankir L (1999): Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc. Natl. Acad. Sci. USA 96, 10397–10402.

    Article  CAS  Google Scholar 

  • Berl T & Robertson GL (2000): Pathophysiology of water metabolism. In The Kidney. ed. BM Brenner, pp 866–924. Philadelphia: Saunders.

    Google Scholar 

  • Blot-Chabaud M, Laplace M, Cluzeaud F, Capurro C, Cassingéna R, Vandewalle A, Farman N & Bonvalet JP (1996): Characteristics of a rat cortical collecting duct cell line that maintains high transepithelial resistance. Kidney Int. 50, 367–376.

    Article  CAS  Google Scholar 

  • Bouby N, Ahloulay M, Nsegbe E, Déchaux M, Schmitt F & Bankir L (1996): Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action. J. Am. Soc. Nephrol. 7, 842–851.

    CAS  PubMed  Google Scholar 

  • Bouby N, Bachmann S, Bichet D & Bankir L (1990): Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 27) 258, F973–F979.

    Article  CAS  Google Scholar 

  • Bouby N, Hassler C & Bankir L (1999): Contribution of vasopressin to progression of chronic renal failure: study in Brattleboro rats. Life Sci. 65, 991–1004.

    Article  CAS  Google Scholar 

  • Bregman R, Boim MA, Santos OFP, Ramos OL & Schor N (1990): Effects of systemic hypertension, antidiuretic hormone, and prostaglandins on remnant nephrons. Hypertension 15(Suppl 1), I.72–I.75.

    Article  Google Scholar 

  • Choukroun G, Schmitt F, Martinez F, Drüeke TB & Bankir L (1997): Low urine flow reduces the capacity to excrete a sodium load in humans. Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 42) 273, R1726–R1733.

    Article  CAS  Google Scholar 

  • Djelidi S, Fay M, Cluzeaud F, Escoubet B, Eugene E, Capurro C, Bonvalet JP, Farman N & Blot-Chabaud M (1997): Transcriptional regulation of sodium transport by vasopressin in renal cells. J. Biol. Chem. 272, 32919–32924.

    Article  CAS  Google Scholar 

  • Ecelbarger CA, Kim GH, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG & Knepper MA (2000): Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. Am. J. Physiol.—Renal Physiol. 279, F46–F53.

    Article  CAS  Google Scholar 

  • Fernandes S, Bruneval P, Hagege A, Heudes D, Ghostine S & Bouby N (2002): Chronic V2-vasopressin receptor stimulation increases basal blood pressure and exacerbates deoxycorticosterone acetate–salt hypertension. Endocrinology 143, 2759–2766.

    Article  CAS  Google Scholar 

  • Gellai M, Silverstein JH, Hwang JC, LaRochelle FT & Valtin H (1984): Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 15) 246, F819–F827.

    Article  CAS  Google Scholar 

  • Hadj-Aissa A, Bankir L, Fraysse M, Bichet DG, Laville M, Zech P & Pozet N (1992): Influence of the level of hydration on the renal response to a protein meal. Kidney Int. 42, 1207–1216.

    Article  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M & Marumo F (1997): Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am. J. Physiol. 272, F235–F241.

    Article  CAS  Google Scholar 

  • Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB & Knepper MA (1999): Vasopressin increases Na–K–2Cl cotransporter expression in thick ascending limb of Henle's loop. Am. J. Physiol. 276, F96–F103.

    CAS  PubMed  Google Scholar 

  • Knepper MA & Star RA (1990): The vasopressin-regulated urea transporter in renal inner medullary collecting duct. Am. J. Physiol. 259, F393–F401.

    CAS  PubMed  Google Scholar 

  • Kwon TH, Hager H, Nejsum LN, Andersen ML, Frokiaer J & Nielsen S (2001): Physiology and pathophysiology of renal aquaporins. Semin. Nephrol. 21, 231–238.

    Article  CAS  Google Scholar 

  • Lifton RP (1996): Molecular genetics of human blood pressure variation. Science 272, 676–680.

    Article  CAS  Google Scholar 

  • Matsuguchi H, Schmid PG, Van-Orden D & Mark AL (1981): Does vasopressin contribute to salt-induced hypertension in the Dahl strain? Hypertension 3, 174–181.

    Article  CAS  Google Scholar 

  • Merrill DC, Skelton MM & Cowley Jr AW (1986): Humoral control of water and electrolyte excretion during water restriction. Kidney Int. 29, 1152–1161.

    Article  CAS  Google Scholar 

  • Morel F, Imbert-Teboul M & Chabardes D (1987): Receptors to vasopressin and other hormones in the mammalian kidney. Kidney Int. 31, 512–520.

    Article  CAS  Google Scholar 

  • Murillo-Carretero MI, Ilundain AA & Echevarria M (1999): Regulation of aquaporin mRNA expression in rat kidney by water intake. J. Am. Soc. Nephrol. 10, 696–703.

    CAS  PubMed  Google Scholar 

  • Nicco C, Wittner M, DiStefano A, Jounier S, Bankir L & Bouby N (2001): Chronic exposure to vasopressin upregulates ENaC and sodium transport in the rat renal collecting duct and lung. Hypertension 38, 1143–1149.

    Article  CAS  Google Scholar 

  • Pedersen RS, Bentzen H, Bech JN & Pedersen EB (2001): Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am. J. Physiol. Renal Physiol. 280, F860–F867.

    Article  CAS  Google Scholar 

  • Robertson GL (1984): Abnormalities of thirst regulation. Kidney Int. 25, 460–469.

    Article  CAS  Google Scholar 

  • Rossier BC (1997): Cum grano salis: the epithelial sodium channel and the control of blood pressure. J. Am. Soc. Nephrol. 8, 980–992.

    CAS  PubMed  Google Scholar 

  • Tomita K, Pisano JJ & Knepper MA (1985): Control of sodium and potassium transport in the cortical collecting duct of the rat. J. Clin. Invest. 76, 132–136.

    Article  CAS  Google Scholar 

  • Verrey F (1994): Antidiuretic hormone action in A6 cells: effect on apical Cl and Na conductances and synergism with aldosterone for NaCl reabsorption. J. Membr. Biol. 138, 65–76.

    Article  CAS  Google Scholar 

  • Walter SJ, Tennakoon V, McClune JA & Shirley DG (1996): Role of volume status in vasopressin-induced natriuresis: studies in Brattleboro rats. J. Endocrinol. 151, 49–54.

    Article  CAS  Google Scholar 

  • Yagil C, Ben-Ishay D & Yagil Y (1996): Disparate expression of the AVP gene in Sabra hypertension-prone and hypertension-resistant rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 40) 271, F806–F813.

    Article  CAS  Google Scholar 

  • Yamamoto T, Sasaki S, Fushimi K, Kawasaki K, Yaoita E, Oota K, Hirata Y, Marumo F & Kihara I (1995): Localization and expression of a collecting duct water channel, aquaporin, in hydrated and dehydrated rats. Exp. Nephrol. 3, 193–201.

    CAS  PubMed  Google Scholar 

  • Zerbe RL, Miller JZ & Robertson GL (1991): The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J. Lab. Clin. Med. 117, 51–59.

    CAS  PubMed  Google Scholar 

  • Zhang X, Hense HW, Riegger GAJ & Schunkert H (1999): Association of arginine vasopressin and arterial blood pressure in a population-based sample. J. Hypertens. 17, 319–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L Bankir for fruitful scientific discussions, and Carole Nicco and Pascale Bardoux, PhD students, who performed some of the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: N Bouby

Contributors: NB was primarily responsible for the writing of the paper. SF took part in the acquisition of some experimental data and preparation of the paper.

Corresponding author

Correspondence to N Bouby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouby, N., Fernandes, S. Mild dehydration, vasopressin and the kidney: animal and human studies. Eur J Clin Nutr 57 (Suppl 2), S39–S46 (2003). https://doi.org/10.1038/sj.ejcn.1601900

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601900

Keywords

This article is cited by

Search

Quick links