Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

24-h hydration status: parameters, epidemiology and recommendations

Abstract

Hydration of individuals and groups is characterised by comparing actual urine osmolality (Uosm) with maximum Uosm. Data of actual, maximum and minimum Uosm in infants, children and adults and its major influencing factors are reviewed. There are remarkable ontogenetic, individual and cultural differences in Uosm. In the foetus and the breast-fed infant Uosm is much lower than plasma osmolality, whereas in children and adults it is usually much higher. Individuals and groups may show long-term differences in Uosm. In industrialised countries, the gender difference of Uosm is common. There are large intercultural differences of mean 24-h Uosm ranging from 860 mosm/kg in Germany, 649 mosm/kg in USA to 392 mosm/kg in Poland. A new physiologically based concept called ‘free-water reserve’ quantifies differences in 24-h euhydration. In 189 boys of the DONALD Study aged 4.0–6.9 y, median urine volume was 497 ml/24-h and median Uosm 809 mosm/kg. Considering mean−2 s.d. of actual maximum 24-h Uosm of 830 mosm/kg as upper level of euhydration and physiological criterion of adequate hydration in these boys, median free-water reserve was 11 ml/24-h. Based on median total water intake of 1310 ml/24-h and the third percentile of free-water volume of −156 ml/24-h, adequate total water intake was 1466 ml/24-h or 1.01 ml/kcal. Data of Uosm in 24-h urine samples and corresponding free-water reserve values of homogeneous groups of healthy subjects from all over the world might be useful parameters in epidemiology to investigate the health effects of different levels of 24-h euhydration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  • Abyholm G & Monn E (1979): Intranasal DDAVP-test in the study of renal concentrating capacity in children with recurrent urinary tract infections. Eur. J. Pediatr. 130, 149–154.

    CAS  PubMed  Article  Google Scholar 

  • Agboola A & Adewoye HO (1978): A study of serum and urine osmolality values in pregnant Nigerian women. Int. J. Gynaecol. Obstet. 16, 56–57.

    CAS  PubMed  Article  Google Scholar 

  • Alwall N (1978): Population studies on non-obstructive urinary tract infection in non-pregnant women: importance of method and material. Acta Med. Scand. 203, 95–105.

    CAS  PubMed  Article  Google Scholar 

  • Armelini PA & Gonzalez CF (1979): Breast feeding and fluid intake in a hot climate. Clin. Pediatr. 18, 424–425.

    CAS  Article  Google Scholar 

  • Askergren A, Allgen LG & Bergström J (1981): Studies on kidney function in subjects exposed to organic solvents. Acta Med. Scand. 209, 485–488.

    CAS  PubMed  Article  Google Scholar 

  • Assadi KF (1990): Renal tubular dysfunction in fetal alcohol syndrome. Pediatr. Nephrol. 4, 48–51.

    CAS  PubMed  Article  Google Scholar 

  • Barnett HL, Vesterdal J, McNamara H & Lauson HD (1952): Renal water excretion in premature infants. J. Clin. Invest. 31, 1069–1073.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Baumgarten R, van de Pol MHJ, Deen PMT, van Os CH & Wetzels JFM (2000): Dissociation between urine osmolality and urinary excretion of aquaporin-2 in healthy volunteers. Nephrol. Dial. Transplant. 15, 1155–1161.

    CAS  PubMed  Article  Google Scholar 

  • Bendz H (1985): Kidney function in a selected lithium population. Acta Psychiatr. Scand. 72, 451–463.

    CAS  PubMed  Article  Google Scholar 

  • Berlyne GM, Yagil R, Goodwin S & Morag M (1976): Drinking habits and urine concentration of man in southern Israel. Israel J. Med. Sci. 12, 765–769.

    CAS  PubMed  Google Scholar 

  • Calcagno PL & Rubin MI (1954): Effect of added carbohydrate on growth, nitrogen retention and renal water excretion in premature infants. Pediatrics 13, 193–201.

    CAS  PubMed  Article  Google Scholar 

  • Calcagno PL & Rubin MI (1960): Water requirement for renal excretion in full-term newborn infants and premature infants fed a variety of formulas. J. Pediatr. 56, 717–727.

    CAS  PubMed  Article  Google Scholar 

  • Chaptal J, Jean R, Guillaumot R & Morel G (1963): Etude statistique de l’elimination urinaire des electrolytes chez l’enfant normal a differents ages. Arch. Franc. Pediatr. 20, 905–931.

    CAS  Google Scholar 

  • Cross RB, Galton-Fenzi B & Jordan L (1989): A simple field test for assessing salt balance in heat-stressed miners. J. Occupat. Med. 31, 668–673.

    CAS  Article  Google Scholar 

  • Curran MA, Nijland MJM, Mann SE & Ross (1998): Human amniotic fluid mathematical model: determination and effect of intramembranous sodium flux. Am. J. Obstet. Gynecol. 178, 484–490.

    CAS  PubMed  Article  Google Scholar 

  • Curtis JR & Donovan BA (1979): Assessment of renal concentrating ability. Br. Med. J. I 304–305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Czerny A (1939): Die Pädiatrie meiner Zeit. pp 52–54. Berlin: Springer.

    Book  Google Scholar 

  • Czerny A (1942): Sammlung klinischer Vorlesungen über Kinderheilkunde. p 20. Leipzig: Thieme.

    Google Scholar 

  • Davison JM, Sheills EA, Philips PR, Barron WM & Lindheimer MD (1993): Metabolic clearance of vasopressin and an analogue resistant to vasopressinase in human pregnancy. Am. J. Physiol. 264, F348–F353.

    CAS  PubMed  Google Scholar 

  • Department of Health (1991): Dietary Reference Values for Food, Energy and Nutrients for the United Kingdom. pp 1–212. London: The Stationery Office.

  • Diem K & Lentner C (1968): Documenta Geigy, Wissenschaftliche Tabellen. p 513 7th edition. Basel: Geigy.

    Google Scholar 

  • DiScala VA & Stein RM (1982): Effects of chronic sodium depletion on renal tubular sodium and water reabsorption in man. Nephron 31, 151–158.

    CAS  PubMed  Article  Google Scholar 

  • Drescher AN, Barnett HL & Troupkou V (1962): Water balance in infants during water deprivation. Am. J. Dis. Child. 104, 80–93.

    Article  Google Scholar 

  • Dyer AR, Shipley M, Elliott P & INTERSALT Cooperative Research Group (1994): Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT Study: estimates of reliability. Am. J. Epidemiol. 139, 927–939.

    CAS  PubMed  Article  Google Scholar 

  • Ebner A & Manz F (2002): Sex difference of urinary osmolality in German children. Am. J. Nephrol. 22, 352–355.

    PubMed  Article  Google Scholar 

  • Edelmann CM, Barnett HL & Troupkou V (1960): Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J. Clin. Invest. 39, 1062–1069.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Edelmann CM, Barnett HL, Stark H, Boichis H & Rodriguez-Soriano J (1967): A standardized test of renal concentrating capacity in children. Am. J. Dis. Child. 114, 639–644.

    PubMed  Google Scholar 

  • Epstein FH, Kleeman CR & Hendrikx A (1957a): The influence of bodily hydration on the renal concentrating process. J. Clin. Invest. 36, 629–634.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Epstein FH, Kleeman CR, Pursel S & Hendrikx A (1957b): Effect of feeding protein and urea on the renal concentrating process. J. Clin. Invest. 36, 635–640.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Finberg L (1986): Too little water has become too much. Am. J. Dis. Child. 140, 524.

    CAS  PubMed  Article  Google Scholar 

  • Fisher DA, Pyle HR, Porter JC, Beard AG & Panos TC (1963): Control of water balance in the newborn. Am. J. Dis. Child. 106, 51–60.

    Google Scholar 

  • Fogarty AJ (1971): The significance of sodium in renal stone formation. Br. J. Urol. 43, 403–405.

    CAS  PubMed  Article  Google Scholar 

  • Frenzke H, Rudloff S & Manz F (1998): Flüssigkeitsversorgung von Dortmunder Kleinkindern. Monatsschr. Kinderheilkd. 146, 777–783.

    Article  Google Scholar 

  • Gamble JL (1944): The water requirements of castaways. Proc. Am. Phil. Soc. 88, 151–158.

    CAS  Google Scholar 

  • Goldberg NM & Adams E (1983): Supplementary water for breast-fed babies in a hot and dry climate not really a necessity. Arch. Dis. Child. 58, 73–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Guignard JP & Torrado A (1978): Nitrite indicator strip test for bacteriuria. Lancet 1, 47.

    CAS  PubMed  Article  Google Scholar 

  • Güllner HG, Gill JR, Bartter FC & Düsing R (1980): The role of the prostaglandin system in the regulation of renal function in normal women. Am. J. Med. 69, 718–724.

    PubMed  Article  Google Scholar 

  • Hadley R, Bernard HO & Stinson JM (1975): Serial urinary osmolality in pregnancy. J. Nat. Med. Assoc. 67, 373–374.

    CAS  Google Scholar 

  • Halperin ML, Margolis BL, Robinson LA, Halperin RM, West ML & Bear RA (1988): The urine osmolal gap: a clue to estimate urine ammonium in “hybrid” types of metabolic acidosis. Clin. Investigat. Med. 11, 198–202.

    CAS  Google Scholar 

  • Hansen JDL & Smith CA (1953): Effects of withholding fluid in the immediate postnatal period. Pediatrics 12, 99–113.

    CAS  PubMed  Article  Google Scholar 

  • Höhler M, Decher-Spliethoff E, Kersting K, Ternes ML & Manz F (1994): Funktionsbelastung des Stoffwechsels und der Niere bei Kraftsportlern mit eiweißreicher Kost. Deutsche Z. Sportmed. 45, 92–103.

    Google Scholar 

  • Hytten FE & Robertson EG (1971): Maternal water metabolism in pregnancy. Proc. Roy. Soc. Med. 64, 46.

    Article  Google Scholar 

  • Hytten FE & Thomson AM (1965): Pregnancy, childbirth and lactation. In The Physiology of Human Survival. eds OG Edhohn, AL Bacharach, pp 327–350. London: Academic Press.

    Google Scholar 

  • Intersalt Cooperative Research Group (1988): Intersalt: an international study of electrolyte and blood pressure Results for 24 hour urinary sodium and potassium excretion. Br Med J 297, 319–328.

  • Isaacson LC (1960): Urine osmolality in thirsting normal subjects. Lancet I, 467–468.

    Article  Google Scholar 

  • Janovsky M, Martinek J & Slechtova R (1968): The effect of different diets on the economy of water and electrolytes during restricted water intake in human infants. Phys. Bohemoslovaca. 17, 143–152.

    CAS  Google Scholar 

  • Joppich R, Scherer B & Weber PC (1979): Renal prostaglandins: relationship to the development of blood pressure and concentrating capacity in pre-term and full term healthy infants. Eur. J. Pediatr. 132, 253–259.

    CAS  PubMed  Article  Google Scholar 

  • Kanabrocki EL, Snedeker PW, Zieher SJ, Raymond R, Gordey J, Bird T, Sothern RB, Hrushesky WJM, Marks G, Olwin JH & Kaplan E (1988): Circadian characteristics of dialyzable and non-dialyzable human urinary electrolytes, trace elements and total solids. Chronobiol. Int. 5, 175–184.

    CAS  PubMed  Article  Google Scholar 

  • Kawauchi A, Watanabe H & Miyoshi K (1996): Early morning urine osmolality in non-enuretic and enuretic children. Pediatr. Nephrol. 10, 696–698.

    CAS  PubMed  Article  Google Scholar 

  • Kilpatrick SJ (1997): Therapeutic interventions for oligohydramnios: amnioinfusion and maternal hydration. Clin. Obstetr. Gynecol. 40, 328–336.

    CAS  Article  Google Scholar 

  • Kirkland Jl, Lye M, Levy DW & Banerjee AK (1983): Patterns of urine flow and electrolyte excretion in healthy elderly people. Br. Med. J. 287, 1665–1667.

    Article  Google Scholar 

  • Klahr S, Tripathy K, Garcia FT, Mayoral LG, Ghitis J & Bolanos O (1967): In the nature of renal concentrating defect in malnutrition. Am. J. Med. 43, 84–96.

    CAS  PubMed  Article  Google Scholar 

  • Kleiner SM (1999): Water: an essential but overlooked nutrient. J. Am. Diet. Assoc. 99, 200–206.

    CAS  PubMed  Article  Google Scholar 

  • Koppeschaar HPF, Meinders AE & Schwarz F (1985): Renal concentrating ability in obesity, effect of modified fasting and the supplementation of T3, sodium chloride and carbohydrate. Metabolism 34, 1066–1072.

    CAS  PubMed  Article  Google Scholar 

  • Kutz FW, Cook BT, Carter-Pokras OD, Brody D & Murphy RS (1992): Selected pesticide residues and metabolites in urine from a survey of the U. S. general population. J. Toxicol. Environ. Health. 37, 277–291.

    CAS  PubMed  Article  Google Scholar 

  • Kuznetsova AA, Shakhmatova EI, Prutskova NP & Natochin YV (2000): Possible role of prostaglandins in pathogenesis of nocturnal enuresis in children. Scand. J. Urol. Nephrol. 34, 27–31.

    CAS  PubMed  Article  Google Scholar 

  • Läckgren G, Neveus T & Stenberg A (1997): Diurnal plasma vasopressin and urinary output in adolescents with monosymptomatic nocturnal diuresis. Acta Paediatr. 86, 385–390.

    PubMed  Article  Google Scholar 

  • Levinsky NG, Berliner RW & Preston AS (1959): The role of urea in the urine concentrating mechansim. J. Clin. Invest. 38, 741–748.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lindeman RD, Lee TD, Yiengst MJ & Shock NW (1966): Influence of age, renal disease, hypertension, diuretics and calcium on the antidiuretic responses to suboptimal infusion of vasopressin. J. Lab. Clin. Med. 68, 206–223.

    CAS  PubMed  Google Scholar 

  • Liqiang Z, Xizhen H, Xuewang L & Quanyou W (1997): Alterations in renal function in patients with obstructive sleep apnea syndrome and effects of continuous positive airway pressure. Chin. Med. J. 110, 915–918.

    Google Scholar 

  • Macarnon C, Schneider G & Ertel NH (1975): The starved kidney: a defect in renal concentrating ability. Metabolism 24, 457–458.

    Article  Google Scholar 

  • Manz F (1979): Säure-Basen-Haushalt bei Ernährung mit synthetischen Diätpräparaten und bei Ernährung mit Frühgeborenen- und Säuglingsmilchnahrungen. pp 178–213. Heidelberg: Ruprecht-Karl-Universität, Habilitationsschrift.

    Google Scholar 

  • Manz F, Vecsei P & Wesch H (1984): Renale Säureausscheidung und renale Molenlast bei gesunden Kindern und Erwachsenen. Monatsschr. Kinderheilkd. 132, 163–167.

    CAS  PubMed  Google Scholar 

  • Manz F, Diekmann L, Kalhoff H, Stock GJ & Kunz C (1992): Low renal net acid excretion, high calciuria and biochemical signs of sodium deficiency in low-birth-weight infants fed a new low-phosphorus formula. Acta Pediatr. 81, 969–973.

    CAS  Article  Google Scholar 

  • Manz F, Wentz A & Sichert-Hellert W (2002): The most essential nutrient: defining the adequate intake of water. J. Pediatr. 141, 587–592.

    PubMed  Article  Google Scholar 

  • Marild S, Jodal U, Jonasson G, Mangelus L, Oden A & Persson NG (1992): Reference values for renal concentrating capacity in children by the desmopressin test. Pediatr. Nephrol. 6, 254–257.

    CAS  PubMed  Article  Google Scholar 

  • McCance RA & Widdowson EM (1954): Normal renal function in the first two days of life. Arch. Dis. Child. 29, 488–494.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Miles BE, Paton A & de Wardener HE (1954): Maximum urine concentration. Br. Med. J. II, 901–905.

    Article  Google Scholar 

  • Miller LA & Stapleton FB (1989): Urinary volume in children with urolithiasis. J. Urol. 141, 918–920.

    CAS  PubMed  Article  Google Scholar 

  • Monnens LAH. (1971): De ontwikkeling van het concentrerend — en zuurvormend vermogen van de nier bij het kind. pp 1–189. Nijmegen: Schippers.

    Google Scholar 

  • Monson JP & Richards P (1978): Desmopressin urine concentration test. Br. Med. J. I, 24.

    Article  Google Scholar 

  • Nadvornikova H, Schück O & Cort JH (1980): A standardized desmopressin test of renal concentrating ability. Clin. Nephrol. 14, 142–147.

    CAS  PubMed  Google Scholar 

  • National Research Council (1989): Recommended Dietary Allowances. 10th Edition, pp 247–250. Washington: National Academy Press.

  • Oomen HAPC (1967): Nitrogen compounds and electrolytes in the urine of New Guinean sweet potato eaters: a study of normal values. Trop. Geogr. Med. 19, 31–47.

    CAS  PubMed  Google Scholar 

  • Phillip M, Singer A, Chaimovitz C & Golinsky D (1993): Urine osmolality in nursery school children in a hot climate. Isr. J. Med. Sci. 29, 104–106.

    Google Scholar 

  • Polacek L, Vocel J, Neugebauerova L, Sebkova M & Vechetova E (1965): The osmotic concentrating ability in healthy infants and children. Arch. Dis. Child. 40, 291–295.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pratt EL & Snyderman SE (1953): Renal water requirement of infants fed evaporated milk with and without added carbohydrate. Pediatrics 11, 65–69.

    CAS  PubMed  Article  Google Scholar 

  • Pratt EL, Bienvenu B & Whyte MM (1948): Concentration of urine solutes by young infants. Pediatrics 1, 181–187.

    CAS  PubMed  Article  Google Scholar 

  • Raisz LG, Au WYW & Scheer RL (1959): Studies on the renal concentrating mechanism III. Effect of heavy exercise. J. Clin. Invest. 38, 8–13.

    CAS  PubMed  Article  Google Scholar 

  • Rittig S, Knudsen UB, Norgaard JP, Pedersen EB & Djurhuus JC (1989): Abnormal diurnal rhythm of plasma vasopressin and urinary output in patients with enuresis. Am. J. Physiol. 256, F664–F671.

    CAS  PubMed  Google Scholar 

  • Riva E, Rottoli A, Castelli L, Magno F, Paccanelli S & Giovanni M (1984): Valutazione di alcuni parametri del metabolismo idro-salino in età pediatrica. Min. Ped. 36, 667–672.

    CAS  Google Scholar 

  • Robers F & Manz F (1996): Zur Flüssigkeitsversorgung im Kindesalter. Sozialpäd. KiPra. 18, 85–89.

    Google Scholar 

  • Rodriguez-Soriano J, Vallo A, Castillo G & Oliveros R (1981): Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int. 20, 700–704.

    CAS  PubMed  Article  Google Scholar 

  • Ross MG, Nijland MJM & Kullama LK (1996a): 1-Deamino-[8-D-arginine] vasopressin-induced maternal plasma hypoosmolality increases ovine amniotic fluid volume. Am. J. Obstet. Gynecol. 174, 1118–1127.

    CAS  PubMed  Article  Google Scholar 

  • Ross MG, Cedars L, Nijland MJM & Ogundipe A (1996b): Treatment of oligohydramnios with maternal 1-deamino-[8-D-arginine] vasopressin-induced plasma hypoosmolality. Am. J. Obstet. Gynecol. 174, 1608–1613.

    CAS  PubMed  Article  Google Scholar 

  • Rowe JW, Shock NW & DeFronzo RA (1976): The influence of age on the renal response to water deprivation in man. Nephron 17, 270–278.

    CAS  PubMed  Article  Google Scholar 

  • Saigal S & Sinclair JC (1977): Urine solute excretion in growing low-birth-weight infants. J. Pediatr. 90, 934–938.

    CAS  PubMed  Article  Google Scholar 

  • Schiavon S & Emmans GC (2000): A model to predict water intake of a pig growing in a known environment on a known diet. Br. J. Nutr. 84, 873–883.

    CAS  PubMed  Article  Google Scholar 

  • Schreyer P, Sherman DJ, Ervin MG, Day L & Ross MG (1990): Maternal dehydration: impact on ovine amniotic fluid volume and composition. J. Dev. Physiol. 13, 283–287.

    CAS  PubMed  Google Scholar 

  • Schrier RW, Hano J, Keller HI, Finkel RM, Gilliland PF, Cirksena WJ & Teschan PE (1970): Renal, metabolic and circulatory responses to heat and exercise. Ann. Intern. Med. 73, 213–223.

    CAS  PubMed  Article  Google Scholar 

  • Shirreffs SM (2000): Markers of hydration status. J. Sports Med. Phys. Fitness 40, 80–84.

    CAS  PubMed  Google Scholar 

  • Shirreffs SM & Maughan RJ (1998): Urine osmolality and conductivity as indices of hydration status in athletes in the heat. Med. Sci. Sports Exerc. 30, 1598–1602.

    CAS  PubMed  Article  Google Scholar 

  • Sichert-Hellert W, Kersting M & Manz F (2001): Fifteen year trends in water intake in German children and adolescents: results of the DONALD Study. Acta Paediatr. 90, 732–737.

    CAS  PubMed  Article  Google Scholar 

  • Simmons WK & Korte R (1972): The excretion of urea in relation to protein intake and diuresis. Arch. Latinoamericanos Nutr. 22, 33–40.

    CAS  Google Scholar 

  • Singhof S & Manz F (2001): Flüssigkeitsversorgung der Senioren in Deutschland. Aktuel. Ernaehr. Med. 26, 102–106.

    Article  Google Scholar 

  • Skinner R, Cole M, Pearson ADJ, Coulthard MG & Craft AW (1996): Specificity of pH and osmolality of early morning urine sample in assessing distal renal tubular function in children: results in healthy children. Br. Med. J. 312, 1337–1338.

    CAS  Article  Google Scholar 

  • Smith CA, Yudkin S, Young W, Minkowski A & Cushman M (1949): Adjustment of electrolytes and water following premature birth. Pediatrics 3, 34–47.

    CAS  PubMed  Article  Google Scholar 

  • Stapleton FB & Miller LA (1988): Renal function in children with idiopathic hypercalciuria. Pediatr. Nephrol. 2, 229–235.

    CAS  PubMed  Article  Google Scholar 

  • Stevens LH & Savage DCL (1972): Neonatal homeostasis. Aust. Paediat. J. 8, 16–29.

    CAS  PubMed  Google Scholar 

  • Stolley H & Schlage C (1977): Water balance and water requirement of preschool children. Nutr. Metab. 21(Suppl 1), 15–17.

    CAS  PubMed  Article  Google Scholar 

  • Svenningsen NW & Aronson AS (1974): Postnatal development of renal concentration capacity as estimated by DDAVP-test in normal and asphyxiated neonates. Biol. Neonate 25, 230–241.

    CAS  PubMed  Article  Google Scholar 

  • Tan ACITL, Hoefnagels WHL, Gerritsen AAJ, Jansen RWMM, Kloppenborg PWC & Benraad TJ (1991): Mild dehydration and atrial natriuretic peptide in young and elderly subjects. Horm. Metab. Res. 23, 435–437.

    CAS  PubMed  Article  Google Scholar 

  • Tencer J (1988): Asymptomatic bacteriuria — a long term study. Scand. J. Urol. Nephrol. 22, 31–34.

    CAS  PubMed  Article  Google Scholar 

  • Toor M, Katz AI, Massry S, Agmon J & Rosenfeld J (1965): Concentration and dilution of urine in man living in a hot climate. Isr. J. Med. Sci. 1, 157 (abstract).

    Google Scholar 

  • Tryding N, Berg B, Ekman S, Nilsson JE, Sterner G & Harris A (1988): DDAVP test for renal concentration capacity. Scand. J. Urol. Nephrol. 22, 141–145.

    CAS  PubMed  Article  Google Scholar 

  • Uttley WS, Paxton J & Thistlethwaite D (1972): Urinary concentrating ability and growth failure in urinary tract disorders. Arch. Dis. Child. 47, 436–441.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • VandeWalle J, Thijs J, VanLaecke E & Hoebeke P (2000): Nocturnal enuresis related to the abnormalities of the nycthemeral rhythm of diuresis on renal function and salt handling and bladder dysfunction. Pediatr. Nephrol. 14, C61 (abstract).

    Google Scholar 

  • Van Reen R, Valyasevi A & Dhanamitta S (1970): The effect of methionine and pyridoxine supplements on urinary sulfate. Am. J. Clin. Nutr. 23, 940–947.

    CAS  PubMed  Article  Google Scholar 

  • Waters WE, Sussmann M & Asscher AW (1967): Community study of urinary pH and osmolality. Br. J. Prev. Soc. Med. 21, 129–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werner M, Kersting M & Manz F (1990): Untersuchung des Wasserhaushalts bei 19 Kleinkindern in häuslicher Umgebung. Monatsschr. Kinderheilkd. 138, 528 (abstract).

    Google Scholar 

  • Widdowson EM & McCance RA (1970): Use of random specimens of urine to compare dietary intakes of African and British children. Arch. Dis. Childh. 45, 547–552.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Winberg J (1959): Determination of renal concentration capacity in infants and children without renal disease. Acta Pediatr. 48, 318–328.

    Google Scholar 

  • Yates AA, Schlicker SA & Suitor CW (1998): Dietary Reference Intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet. Assoc. 98, 699–706.

    CAS  PubMed  Article  Google Scholar 

  • Zebidi A, Rached S, Dhidah M, Sadraoui M, Tabka Z, Dogui M, Sfar H, Chaieb M & Chaieb A (1990): Effets du jeune de Ramadan sur certains parametres plasmatiques et urinaires. La Tunesie Méd. 68, 367–372.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Ministerium für Schule, Wissenschaft und Forschung’ of North-Rhine-Westphalia and by the ‘Bundesministerium für Gesundheit’.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: F Manz.

Contributors: FM designed the publication, developed the concept of free-water reserve and wrote the paper. AW carried out data analysis and assisted in compiling the data from the literature.

Corresponding author

Correspondence to F Manz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manz, F., Wentz, A. 24-h hydration status: parameters, epidemiology and recommendations. Eur J Clin Nutr 57 (Suppl 2), S10–S18 (2003). https://doi.org/10.1038/sj.ejcn.1601896

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601896

Keywords

  • water
  • hydration status
  • urine osmolality
  • maximum urine osmolality
  • free-water reserve
  • adequate total water intake

Further reading

Search

Quick links