Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men

Abstract

Objective: To investigate whether the postprandial changes in plasma triacylglycerol (TAG), nonesterified fatty acids (NEFA), glucose and insulin concentrations in young men were the same if an identical meal was fed at breakfast and lunch, and if the response to lunch was modified by consumption of breakfast.

Methods: In two trials (1 and 2) healthy subjects (age 22±1 y, body mass index 22±2 kg/m2) were fed the same mixed macronutrient meal at breakfast at 08:00 h and lunch at 14:00 h. In the third trial, no breakfast was fed and the overnight fast extended until lunch at 14:00 h. Addition of [1,1,1-13C]tripalmitin to one meal in each trial was used to distinguish between endogenous and meal-derived lipids.

Results: The postprandial changes in TAG, NEFA and glucose concentrations were similar in trials 1 and 2. The change in plasma total TAG concentration was about two fold less (P<0.05) after lunch compared to breakfast. Postprandial NEFA suppression was the same after breakfast and lunch. Glucose and insulin responses were significantly greater following lunch suggesting decreasing insulin sensitivity during the day. Consumption of breakfast did not alter the postprandial total TAG or NEFA responses after lunch. Measurement of [13C]palmitic acid concentration showed that handling of TAG and NEFA from the meal was the same after breakfast and lunch, and was not altered by consumption of breakfast.

Conclusions: Overall, these data suggest that in young, healthy men regulation of plasma TAG from endogenous sources, principally VLDL, but not chylomicrons during the postprandial period leads to differences in the magnitude of lipaemic response when the same meal was consumed at breakfast or at lunch 6 h later.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Barter PJ, Carroll KF & Nestel PJ (1971): Diurnal fluctuations in triglyceride, free fatty acids, and insulin during sucrose consumption and insulin infusion in man. J. Clin. Invest. 50, 583–591.

    Article  CAS  Google Scholar 

  • Bergeron N & Havel RJ (1996): Prolonged postprandial responses of lipids and apolipoproteins in triglyceride-rich lipoproteins of individuals expressing an apolipoprotein epsilon 4 allele. J. Clin. Invest. 97, 65–72.

    Article  CAS  Google Scholar 

  • Bjorkegren J, Packard CJ, Hamsten A, Bedford D, Caslake M, Forster L, Shepard J, Stewart P & Karpe F (1996): Accumulation of very large low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J. Lipid Res. 37, 76–78.

    CAS  PubMed  Google Scholar 

  • Brown AJ & Roberts DC (1991): Moderate fish intake improves lipemic response to a standard fat meal. Arterioscler. Thromb. 11, 457–466.

    Article  CAS  Google Scholar 

  • Bulow J, Simonsen L, Wiggins D, Humphreys SM, Frayn KN, Powell D & Gibbons GF (1999): Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose. J Lipid Res. 40, 2034–2043.

    CAS  PubMed  Google Scholar 

  • Burdge GC, Wright P, Jones AE & Wootton SA (2000): A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid phase extraction. Br. J. Nutr. 84, 781–787.

    CAS  PubMed  Google Scholar 

  • Burdge GC, Jones AE & Wootton SA (2002): Eicosapentaenoic and docosapentaenoic acids are the principle products of α-linolenic acid metabolism in young men. Br. J. Nutr. 88, 355–363.

    Article  CAS  Google Scholar 

  • Burdge GC & Wootton SA (2002): Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 88, 411–420.

    Article  CAS  Google Scholar 

  • Byrne CD, Brindle NP, Wang TW & Hales CN (1991): Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem. J. 280, 99–104.

    Article  CAS  Google Scholar 

  • Carroll KF & Nestel PJ (1973): Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 22, 333–348.

    Article  CAS  Google Scholar 

  • Cohen JC & Schall R (1988): Reassessing the effects of simple carbohydrates on the serum triglyceride responses to fat meals. Am. J. Clin. Nutr. 48, 1031–1034.

    Article  CAS  Google Scholar 

  • Cohn JS, McNamara JR, Cohn SD, Ordovas JM & Schaefer EJ (1988): Postprandial plasma lipoprotein changes in human subjects of different ages. J. Lipid Res. 29, 469–479.

    CAS  Google Scholar 

  • Couillard C, Bergeron N, Prud'homme D, Bergeron J, Tremblay A, Bouchard C, Mauriege P & Despres JP (1998): Postprandial triglyceride response in visceral obesity in men. Diabetes 47, 953–960.

    Article  CAS  Google Scholar 

  • Dashti N & Wolfbauer G (1987): Secretion of lipids, apolipoproteins, and lipoproteins by human hepatoma cell line, HepG2: effects of oleic acid and insulin. J. Lipid Res. 28, 423–436.

    CAS  PubMed  Google Scholar 

  • de Bruin TWA, Brouwer CB, van Linde-Sibenius Trip M, Jansen H & Erkelens DW (1993): Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. Am. J. Clin. Nutr. 589, 477–483.

    Article  Google Scholar 

  • Durrington PN, Newton RS & Weinstein DB (1982): Effect of insulin and glucose on very-low-density lipoprotein triglyceride secretion by cultured rat hepatocytes. J. Clin. Invest. 70, 63–73.

    Article  CAS  Google Scholar 

  • Evans K, Kuusela PJ, Cruz ML, Wilhelmova I, Fielding BA & Frayn KN (1998): Rapid chylomicron appearance following sequential meals: effects of second meal composition. Br. J. Nutr. 79, 425–429.

    Article  CAS  Google Scholar 

  • Evans K, Burdge GC, Wootton SA, Clark ML & Frayn KN (2002): Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle. Diabetes 51, 2684–2690.

    Article  CAS  Google Scholar 

  • Fielding BA, Callow J, Owen RM, Samra JS, Matthews D & Frayn KN (1996): Postprandial lipaemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals. Am. J. Clin. Nutr. 63, 36–41.

    Article  CAS  Google Scholar 

  • Folch JL, Lees M & Sloane-Stanley GH (1957): A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.

    CAS  Google Scholar 

  • Frayn KN, Coppack SW, Fielding BA & Humphreys SM (1995): Co-ordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilisation. Adv. Enzyme Regul. 35, 163–178.

    Article  CAS  Google Scholar 

  • Frayn KN, Summers LKM & Fielding BA (1997): Regulation of the plasma non-esterified fatty acid concentration in the postprandial state. Proc. Nutr. Soc. 56, 713–721.

    Article  CAS  Google Scholar 

  • Frayn KN (1998): Non-esterified fatty acid metabolism and postprandial lipaemia. Atheroscler. 141(Suppl 1), S41–S46.

    Article  CAS  Google Scholar 

  • Friday KE, Srinivasan SR, Elkasabany A, Dong C, Wattigney WA, Dalferes E & Berenson GS (1999): Black–white differences in postprandial triglyceride response and postheparin lipoprotein lipase and hepatic triglyceride lipase among young men. Metabolism. 48, 749–754.

    Article  CAS  Google Scholar 

  • Georgopoulos A & Rosengrad AM (1989): Abnormalities in the metabolism of postprandial and fasting triglyceride-rich lipoprotein subfractions in normal and insulin-dependent diabetic subjects: effects of sex. Metabolism. 38, 781–789.

    Article  CAS  Google Scholar 

  • Grant KI, Marais MP & Dhansay MA (1994): Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance. Am. J. Clin. Nutr. 59, 853–860.

    Article  CAS  Google Scholar 

  • Harris WS & Connor WE (1980): The effects of salmon oil upon plasma lipids, lipoproteins and triglyceride clearance. Trans. Am. Physic. Assoc. 43, 179–184.

    Google Scholar 

  • Harris WS, Connor WE, Alam N & Illingworth DR (1988): Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J. Lipid Res. 299, 1451–1460.

    Google Scholar 

  • Harris WS & Muzio F (1993): Fish oil reduces postprandial triglyceride concentrations without accelerating lipid-emulsion removal rates. Am. J. Clin. Nutr. 58, 68–74.

    Article  CAS  Google Scholar 

  • Jackson KG, Knapper JM, Zampelas A, Gould BJ, Lovegrove JA, Wright J & Williams CM (1995): Apolipoprotein B-48 and retinyl ester responses to meals of varying monounsaturated fatty acid contents. Atherosclerosis 115, S16.

    Article  Google Scholar 

  • Jarrett RJ & Keen H (1969): Diurnal variation of oral glucose tolerance: a possible pointer to the evolution of diabetes mellitus. BMJ 2, 341–422.

    Article  CAS  Google Scholar 

  • Jones AE, Stolinski M, Smith RD, Murphy JL & Wootton SA (1999): Effect of fatty acid chain length and saturation on the gastrointestinal handling and metabolic disposal of dietary fatty acids in women. Br. J. Nutr. 81, 37–43.

    Article  CAS  Google Scholar 

  • Karpe F, Steiner G, Olivecrona T, Carlson LA & Hamsten A (1993): Metabolism of tryglyceride-rich lipoproteins during alimentary lipaemia. J. Clin. Invest. 91, 748–758.

    Article  CAS  Google Scholar 

  • Karpe F (1997) Postprandial lipid metabolism in relation to coronary heart disease. Proc. Nutr. Soc. 56, 571–678.

    Article  Google Scholar 

  • Koutsari C, Karpe F, Humphreys SM, Frayn KN & Hardman AE (2001): Exercise prevents the accumulation of triglyceride-rich lipoproteins and their remnants seen when changing to a high-carbohydrate diet. Arterioscler. Thromb. Vascul. Biol. 21, 1520–1525.

    Article  CAS  Google Scholar 

  • Laker ME & Mayes PA (1984): Investigations into the direct effects of insulin on hepatic ketogenesis, lipoprotein secretion and pyruvate dehydrogenase activity. Biochim. Biophys. Acta 795, 427–430.

    Article  CAS  Google Scholar 

  • Lee A, Ader M, Bray GA & Bergman RN (1992): Diurnal variation in glucose tolerance. Diabetes 41, 750–759.

    Article  CAS  Google Scholar 

  • Lewis GF, O'Meara NM, Soltys PA, Blackman JD, Iverius PH, Druetzler AF, Getz GS & Polonsky KS (1990): Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. J. Clin. Endocrinol. Metabol. 71, 1041–1050.

    Article  CAS  Google Scholar 

  • Lewis GF, Uffelman KD, Szeto LW & Steiner G (1993): Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 42, 833–842.

    Article  CAS  Google Scholar 

  • Lewis GF, Zinman B, Uffelman KD, Szeto L, Weller B & Steiner G (1994): VLDL production is decreased to a similar extent by acute portal vs. peripheral venous insulin. Am. J. Physiol. 267, E566–E572.

    CAS  PubMed  Google Scholar 

  • Lovegrove JA, Brooks CN, Murphy MC, Gould BJ & Williams CM (1997): Use of manufactured foods enriched with fish oils as a means of increasing long chain n-3 PUFA intake. Br. J. Nutr. 78, 223–236.

    Article  CAS  Google Scholar 

  • Malmstrom R, Packard CJ, Watson TD, Rannikko S, Caslake M, Bedford D, Stewart P, Yki-Jarvinen H, Shepherd J & Taskinen MR (1997a): Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler, Thromb. Vascu. Biol. 17, 1454–1464.

    Article  CAS  Google Scholar 

  • Malmstrom R, Packard CJ, Caslake M, Bedford D, Stewart P, Yki-Jarvinen H, Shepherd J & Taskinen MR (1997b): Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologid. 40, 454–462.

    Article  CAS  Google Scholar 

  • Malmstrom R, Packard CJ, Caslake M, Bedford D, Stewart P, Yki-Jarvinen H, Shepherd J & Taskinen MR (1998): Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 47, 779–787.

    Article  CAS  Google Scholar 

  • Mann JI, Truswell AS & Pimstone BL (1971): The different effects of oral sucrose and glucose on alimentary lipaemia. Clin. Sci. 41, 123–129.

    Article  CAS  Google Scholar 

  • Nestel PJ, Carrol KF & Havenstein N (1970): Plasma tryglyceride response to carbohydrates, fats and caloric intake. Metabolism 19, 1–18.

    Article  CAS  Google Scholar 

  • Patsch JR, Miesenbock G, Hoferwieser T, Muhlberger V, Knapp E, Dunn JK, Gotto Am & Patsch W (1993): Relation of triglyceride metabolism and coronary artery disease. Atheroscler. Thromb. 12, 1336–1345.

    Google Scholar 

  • Reaven GM, Hollenbeck C, Jeng C-Y, WU MS & Chen Y-DI (1988): Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020–1024.

    Article  CAS  Google Scholar 

  • Rivera-Coll A, Fuentes-Arderiu X & Diez-Noguera A (1994): Circadian rhythmic variations in serum concentrations of clinically important lipids. Clin. Chem. 40, 1549–1553.

    CAS  PubMed  Google Scholar 

  • Romon M, Le Fur C, Lebel P, Edme J-L, Fruchart J-C & Dallongeville J (1997): Circadian variation of postprandial lipemia. Am. J. Clin. Nutr. 65, 934–9410.

    Article  CAS  Google Scholar 

  • Salhanick AI, Schwartz SI & Amatruda JM (1991): Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism 40, 275–279.

    Article  CAS  Google Scholar 

  • Samra JS, Clark ML, Humphreys SM, MacDonald IA & Frayn KN (1996): Regulation of lipid metabolism in adipose tissue during early starvation. Am. J. Physiol. 271(Endocrinol. Metaboli. 34) E541–E546.

    CAS  PubMed  Google Scholar 

  • Schlierf G & Dorow E (1973): Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J. Clin. Invest. 52, 732–739.

    Article  CAS  Google Scholar 

  • Schneeman BO, Kottie L, Todd KM & Havel RJ (1993): Relationship between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc. Natl. Acad. Sci. USA 90, 2069–2073.

    Article  CAS  Google Scholar 

  • Shishehbor F, Roche HM & Gibney MJ (1998): The effect of acute carbohydrate load on the monophasic or biphasic nature of the postprandial lipaemic response to acute fat ingestion in human subjects. Br.J. Nutr. 80, 411–418.

    CAS  PubMed  Google Scholar 

  • Shumak SL, Zinman B, Zuniga-Guarjardo S, Poapst M & Steiner G (1988): Triglyceride-rich lipoprotein metabolism during acute hyperinsulinemia in hypertriglyceridemic humans. Metabolism 37, 461–466.

    Article  CAS  Google Scholar 

  • Service FJ, Hall LD, Westland RE, O'Brien PCO, Go VLW, Haymond MW & Rizza RA (1983): Effects of size, time of day and sequence of meal ingestion on carbohydrate tolerance in normal subjects. Diabetologia 25, 316–321.

    Article  CAS  Google Scholar 

  • Sniderman AD, Cianflone K, Arner P, Summers LKM & Frayn KN (1998): The adipocyte, fatty acid trapping and atherogenesis. Aterioscler. Thromb. Vascul. Biol. 18, 147–151.

    Article  CAS  Google Scholar 

  • Sparks JD, Sparks CE & Miller LL (1989): Insulin effects on apolipoprotein B production by normal, diabetic and treated-diabetic rat liver and cultured rat hepatocytes. Biochem. J. 261, 83–88.

    Article  CAS  Google Scholar 

  • Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM & Hennekens CH (1996): A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. J. Am. Med. Assoc. 176, 882–888.

    Article  Google Scholar 

  • Swanson JE, Laine DC, Thomas W & Bantle JP (1992): Metabolic effects of dietary fructose in healthy subjects. Am. J. Clin. Nutr. 55, 851–886.

    Article  CAS  Google Scholar 

  • Topping DL & Mayes PA (1972): The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochem. J. 126, 295–311.

    Article  CAS  Google Scholar 

  • Vogelberg KH, Gries FA & Moschinski D (1978): Heptic production of VLDL triglyceride: dependence of portal substrate and insulin concentration. Hormone Metabol. Res. 12, 688–694.

    Article  Google Scholar 

  • Weintraub MS, Zechner R, Brown A, Eisenberg S & Breslow J (1988): Dietary polyunsaturated fats of the omega-6 and omega-3 series reduce postprandial lipoprotein levels. J. Clin. Invest. 82, 1884–1893.

    Article  CAS  Google Scholar 

  • Williams CM, Moore F, Morgan L & Wright J (1992): Effects of n-3 fatty acids on postprandial triglyceride and hormone concentrations in normal subjects. Br. J. Nutr. 68, 655–666.

    Article  CAS  Google Scholar 

  • Yahia N, Songhurst C & Sanders TAB (1996): Effect of different patterns of fat intake on postprandial lipaemia and factor VII coagulant activity. Proc. Nutr. Soc. 55, 227A (abstract).

    Google Scholar 

  • Zampelas A, Peel AS, Gould BJ, Wright J & Williams CM (1994a): Polyunsaturated fatty acids of the n-6 and n-3 series: effects on postprandial lipid and apolipoprotein levels in healthy men. Eur. J. Clin. Nutr. 48, 88–96.

    Google Scholar 

  • Zampelas A, Culverwell CC, Knapper JME, Jackson K, Gould BJ Wright J & Williams CM (1994b): Olive oil and postprandial lipaemia: a study on the effect of meals of different olive oil content on postprandial lipid levels in healthy men. Proc. Nutr. Soc. 45, 164A (abstract).

    Google Scholar 

Download references

Acknowledgements

We thank Mr C Gelauf for preparation of specimens for GC-C-IRMS and Dr P Wood, Department of Clinical Chemistry, Southampton Hospital University Trust, Southampton, UK for measurement of plasma insulin concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Burdge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burdge, G., Jones, A., Frye, S. et al. Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men. Eur J Clin Nutr 57, 1536–1544 (2003). https://doi.org/10.1038/sj.ejcn.1601722

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601722

Keywords

  • stable isotope
  • postprandial lipaemia
  • men

This article is cited by

Search

Quick links