Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Communication
  • Published:

Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—bone mineral density and body composition studies

Abstract

Objective: In vitro and in vivo comparisons of bone mineral density (BMD) and body composition between GE/Lunar pencil (DPXL) and fan-beam (PRODIGY) absorptiometers.

Design: Comparison of BMD, bone mineral content (BMC) and area of lumbar spine (L2–L4), femoral neck and total body. Total body composition compartments tissue (TBTissue), fat (TBF), lean tissue (TBLean) and %TBF were also compared.

Setting: Centre for Bone and Body Composition Research, University of Leeds.

Phantoms/subjects: A range of spine phantoms, a variable composition phantom (VCP) and total body phantom. A total of 72 subjects were included for the in vivo study.

Results: In vitro: A small significant underestimation of BMD by the Prodigy compared to the DPXL ranging from 0.7 to 2% (p<0.05–0.001) for the spine phantoms. The Prodigy underestimated the VCP %Fat. Although the Prodigy underestimated phantom TBBMD by 1.1±1.0%, TBBMC and area were reduced by 8.2±1.4 and 7.3±1.0%, respectively. The Prodigy overestimated TBTissue 1508 g (2.2%), TBLean 588 g (1.2%), TBF 919 g (4.8%) and %TBF (0.8%).

In vivo: BMD cross-calibration was only required in the femoral neck, DPXLBMD=0.08+0.906*PRODIGYBMD. The Prodigy had higher estimates for TBTissue 1360 g (2.3%), TBLean 840 g (2.0%), TBF 519 g (3.4%), TBBMC 32.8 g (1.3%) and %TBF (0.3%). Cross-calibration equations were required for TBTissueDPXL=−1158+0.997*TBTissuePRODIGY and TBBMCDPXL= 89.7+0.949*TBBMCPRODIGY.

Conclusions: Small differences between the two absorptiometers for both BMD and body composition can be made compatible by use of cross-calibration equations and factors. The discrepancy in body composition compartments requires further research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abrahamsen B, Gram J, Hansen TB & Beck-Nielsen H (1995): Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements. Bone 16, 385–390.

    Article  CAS  Google Scholar 

  • Barthe N, Braillon P, Ducassou D & Basse-Cathalinat B (1997): Comparison of two Hologic DXA systems (QDR 1000 and QDR 4500/A). Br. J. Radiol. 70, 728–739.

    Article  CAS  Google Scholar 

  • Blake GM, Parker JC, Buxton FMA & Fogelman I (1993). Dual X-ray absorptiometry: a comparison between fan beam and pencil beam scans. Br. J. Radiol. 66, 902–906.

    Article  CAS  Google Scholar 

  • Blake GM, Whaner HW & Fogelman I (1998): The Evaluation of Osteoporosis: Dual Energy X-ray Absorptiometry and Ultrasound in Clinical Practice, 2nd Edition. Martin Dunitz, London.

  • Bland JM & Altman DG (1986): Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310.

    Article  CAS  Google Scholar 

  • Bouyoucef SE, Cullum ID & Ell PJ (1996): Cross-calibration of a fan-beam X-ray densitometer with a pencil-beam system. Br. J. Radiol. 69, 522–531.

    Article  CAS  Google Scholar 

  • Diessel E, Fuerst T, Njeh CF, Tylavsky F, Cauley J, Dockrell M & Genant HK (2000): Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J. Appl. Physiol. 89, 599–605.

    Article  CAS  Google Scholar 

  • Economos CD, Nelson ME, Fiatarone MA, Dallal GE, Hemsfield SB, Wang J, Yasumara S, Ma R, Vaswani AN, Russell-Aulet M & Pierson RM (1997): A multi-center comparison of dual energy X-ray absorptiometers: In vivo and in vitro soft tissue measurement. Eur. J. Clin. Nutr. 51, 312–317.

    Article  CAS  Google Scholar 

  • Eiken P, Kolthoff N, Barenholdt O, Hermansen F & Pors NS (1994): Switching from DXA pencil-beam to fan-beam. II: studies in vivo. Bone 15, 667–670.

    Article  CAS  Google Scholar 

  • Eiken P, Barenholdt O, Bjorn JL, Gram J & Pors NS (1994): Switching from DXA pencil-beam to fan-beam. I: studies in vitro at four centres. Bone 15, 671–676.

    Article  CAS  Google Scholar 

  • Ellis KJ & Shypailo RJ (1998): Bone mineral and body composition measurements: cross-calibration of pencil-beam and fan-beam dual-energy X-ray absorptiometers. J. Bone Miner. Res. 13, 1613–1619.

    Article  CAS  Google Scholar 

  • Faulkner KG, Gluer C-C, Estilo M & Genant HK (1993): Cross-calibration of DXA equipment: upgrading from a Hologic QDR 1000/W to a QDR 2000. Calcif. Tissue Int. 52, 79–84.

    Article  CAS  Google Scholar 

  • Franck H, Munz M & Scherrer M (1995): Evaluation of dual-energy X-ray absorptiometry bone mineral measurement — comparison of a single-beam and fan-beam design: the effect of osteophytic calcification on spine bone mineral density. Calcif. Tissue Int. 56: 192–195.

    Article  CAS  Google Scholar 

  • Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S & Van Kuijk (1994): Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J. Bone Miner. Res. 9, 1503–1514.

    Article  CAS  Google Scholar 

  • Griffiths MR, Noakes KA & Pocock NA (1997): Correcting the magnification error of fan beam densitometers. J. Bone Miner. Res. 12, 119–123.

    Article  CAS  Google Scholar 

  • Kalender WA, Felsenberg D, Genant HK, Fischer M, Dequeker J & Reeve J (1995): The European spine phantom—a tool for standardization and quality control in spinal bonemineral measurements by DXA and QCT. Eur. J. Radiol. 20, 83–92.

    Article  CAS  Google Scholar 

  • Kolta S, Ravaud P, Fechtenbaum J, Dougados M & Roux C (2000): Follow-up of individual patients on two DXA scanners of the same manufacturer. Osteoporos Int 11, 709–713.

    Article  CAS  Google Scholar 

  • Lang T, Takada M, Gee R, Wu C, Li J, Hayashi-Clark, Schoen S, March V & Genant HK (1997): A preliminary evaluation of the Lunar Expert-XL for bone densitometry and vertebral morphometry. J. Bone Miner. Res. 12, 136–143.

    Article  CAS  Google Scholar 

  • Lees B, Garland SW, Walton C & Stevenson JC (1997): Evalution of the European spine phantom in a multi-centre clinical trial. Osteoporos. Int. 7, 570–574.

    Article  CAS  Google Scholar 

  • Mazess RB & Barden HS (2000): Evaluation of differences between fan-beam and pencil-beam densitometers. Calcif. Tissue Int. 67, 291–296.

    Article  CAS  Google Scholar 

  • Mazess RB, Barden HS, Bisek JP & Hanson J . (1990): Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am. J. Clin. Nutr. 51, 1106–1112.

    Article  CAS  Google Scholar 

  • Mazess RB, Trempe JA, Bisek JP, Hanson JA & Hans D (1991): Calibration of dual-enery X-ray absorptiometry for bone density. J. Bone Miner. Res. 6, 799–806.

    Article  CAS  Google Scholar 

  • Mazess RB, Hanson JA, Payne R, Nord R & Wilson M (2000): Axial and total-body bone densitometry using a narrow-angle fan-beam. Osteoporos. Int. 11, 158–166.

    Article  CAS  Google Scholar 

  • Milner R, Berry E, Marsden AJ, Smith AH & Smith MA (2000): Anthropomorphic quality assurance phantoms for bone densitometry. 14th International Bone Densitometry Workshop, Warnemünde, Germany. Osteoporos. Int. 11 (Suppl 3), S27.

    Google Scholar 

  • Nord RH, Bisek JP & Miller CG (1997): A new hydroxyapatite spine phantom. 12th International Bone Densitometry Workshop, Crieff, Scotland. Osteoporos. Int. 7: 287.

    Google Scholar 

  • Nord RH, Homuth JR, Hanson JA & Mazess RB (2000): Evaluation of a new DXA fan-beam instrument for measuring body composition. Ann. N. Y. Acad. Sci. 904, 118–125.

    Article  CAS  Google Scholar 

  • Oldroyd B, Milner R, Smith AH & Smith MA (1998a): A total body phantom for use with Lunar dual-energy X-ray absorptiometers. Appl. Radiat. Isotopes. 49, 525–526.

    Article  CAS  Google Scholar 

  • Oldroyd B, Truscott JG, Woodrow G, Milner R, Stewart SP, Smith AH, Westmacott CF & Smith MA (1998b). Comparison of in vivo body composition using two Lunar dual-energy X-ray absorptiometers. Eur. J. Clin. Nutr 52, 180–185.

    Article  CAS  Google Scholar 

  • Paton NIJ, Macallan DC, Jebb SA, Panzianas M & Griffin GE (1995): Dual-energy X-ray absorptiometry results differ between machines. Lancet 346, 899–900.

    Article  CAS  Google Scholar 

  • Ruetsche AG, Lippuner K, Jaeger P & Casez J-P (2000): Differences between dual X-ray absorptiometry using pencil beam and fan beam modes and their determinants in vivo and in vitro. J. Clin. Densit. 3, 157–166.

    Article  CAS  Google Scholar 

  • Tataranni PA, Pettit DJ & Ravussin E (1996): Dual energy X-ray absorptiometry: inter-machine variability. Int. J Obes. Relat. Metab. Disord. 20, 1048–1050.

    CAS  PubMed  Google Scholar 

  • Tothill P, Avenell A, Love J & Reid DM (1994): Comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers and other techniques used for whole-body soft tissue measurements. Eur. J. Clin. Nutr. 48, 781–794.

    CAS  PubMed  Google Scholar 

  • Tothill P, Hannan WJ & Wilkinson S (2001): Comparisons between a pencil beam and two fan beam dual energy X-ray absorptiometers used for measuring total body bone and soft tissue. Br. J. Radiol. 74: 166–176.

    Article  CAS  Google Scholar 

  • Van Loan MD & Mayclin PL (1992): Body composition assessment: dual energy X-ray absorptiometry (DEXA) compared to reference methods. Eur. J. Clin. Nutr. 46, 125–130.

    CAS  PubMed  Google Scholar 

  • Wahner HW, Dunn WL, Brown ML, Morin RL & Riggs L (1988): Comparison of dual-energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin. Proc. 63, 1075–1084.

    Article  CAS  Google Scholar 

  • Woodrow G, Oldroyd B, Turney JH & Smith MA (1996): Influence of changes in peritoneal fluid on body composition measurements by dual-energy X-ray absorptiometry in patients receiving continuous ambulatory peritoneal dialysis. Am. J. Clin. Nutr. 64, 237–241.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Belinda Lees (Royal Brompton Hospital, London) for the loan of the ESP and Hologic phantoms, Dr Derek Pearson (Nottingham City Hospital) for the loan of the Bona Fide phantom, and Dr Russ Nord (GE/Lunar) for the loan of the VCP.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: B Oldroyd.

Contributors: BO, JGT and AHS were all involved in the development of the study. BO recruited the subjects, performed the DXA measurements and data analysis. JGT advised on the statistical analysis. BO produced the drafts of the paper and both JGT and AHS made constructive comments.

Corresponding author

Correspondence to B Oldroyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldroyd, B., Smith, A. & Truscott, J. Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—bone mineral density and body composition studies. Eur J Clin Nutr 57, 977–987 (2003). https://doi.org/10.1038/sj.ejcn.1601633

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1601633

Keywords

This article is cited by

Search

Quick links