ORIGINAL COMMUNICATION

Daidzein and genistein content of cereals

J Liggins¹, A Mulligan^{1,2}, S Runswick¹ and SA Bingham^{1,2}*

¹Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK; and ²European Prospective Investigation of Cancer, University of Cambridge, Cambridge, UK

Objective: To analyse 75 cereals and three soy flours commonly eaten in Europe for the phytoestrogens daidzein and genistein. **Design:** The phytoestrogens daidzein and genistein were extracted from dried foods, and the two isoflavones quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones were accounted for using synthetic daidzin (7-O-glucosyl-4[']-hydroxyisoflavone) and genistin (7-O-glucosyl-4[']5-dihydroxyisoflavone) as internal standards.

Setting: Foods from the Cambridge UK area were purchased, prepared for eating, which included cooking if necessary, and freeze dried. Three stock soy flours were also analysed.

Results: Eighteen of the foods assayed contained trace or no detectable daidzein or genistein. The soy flours were rich sources, containing 1639-2117 mg/kg. The concentration of the two isoflavones in the remaining foods ranged from 33 to 11 $873 \mu \text{g/kg}$.

Conclusion: These analyses will supply useful information to investigators determining the intake of phytoestrogens in cereal products in order to relate intakes to potential biological activities.

Sponsorship: This work was supported by the United Kingdom Medical Research Council, Ministry of Agriculture Fisheries and Food (contract FS2034) and the United States of America Army (contract DAMD 17-97-1-7028). *European Journal of Clinical Nutrition* (2002) **56**, 961–966. doi:10.1038/sj.ejcn.1601419

Keywords: phytoestrogens; daidzein; genistein

Introduction

Phytoestrogens are a diverse group of naturally derived compounds that bear a structural resemblance to 17β -oestradiol (E₂; Setchell & Adlercreutz, 1988). These 'phytoestrogens' include the lignans and coumestans in addition to daidzein, and genistein which have been shown to bind to oestrogen receptors, albeit at comparatively low levels (Shutt & Cox 1972). Sheep grazing on Australian pastures containing a particular type of clover rich in formononetin, which is converted to daidzein in the rumen during fermentation, developed widespread infertility in the 1940s. This problem was traced to these non-steroidal weak oestrogens (Shutt,

Guarantor: S Bingham.

1976). Soya is rich in daidzein and genistein and use of soy in captive cheetah in a Cinncinnati zoo was also shown to be responsible for an infertility syndrome, reversed by its removal from the feed (Setchell *et al*, 1987).

In common with many other weak oestrogens, in model systems the isoflavones have been shown to compete for oestradiol at the receptor complex, yet fail to stimulate a full oestrogenic response after binding to the nucleus (Tang & Adams, 1980). In particular they have been shown to bind to the β estrogen receptor (Kuiper *et al*, 1998). The significance of the structural similarity of the isoflavones to mammalian oestrogens and possible effects on cancer prevention were first promulgated in the early 1980s in publications of Setchell and Adlercreutz (1988). Since that time the literature on the possible health benefits of the isoflavones found predominantly in soy beans has expanded exponentially. Now there are several research fronts covering most of the major public health problems of Western societies. In addition to hormone-related and bowel cancers, phytoestrogens are under active investigation for their protective effects in other hormone related conditions, such as menopausal symptoms, osteoporosis and heart disease (Bingham et al, 1998).

npg

^{*}Correspondence: SA Bingham, Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 ZXY, UK. E-mail: sab@mrc-dunn.cam.ac.uk

Contributors: JL conducted the analyses and prepared first draft of the manuscript, AM organized the results and contributed to the manuscript, SR organized food sampling and contributed to the manuscript. SB produced the final draft of the manuscript.

962

Table 1 Daidzein (Da) and genistein (Ge) content of cereals and cereal products commonly consumed in the UK

		Concentration (µg/kg dry wt)						Mean concentration (μg/kg wet weight)			
			Daidzein		Genistein						
M&W code ^a	Food	Number of samples	Mean	s.e.	Mean	s.e.	DM	Da	Ge	Sum of Da and Ge	
11-001	Arrowroot	4	36	1	16		1.000	36	16	52	
11-002	Pearl barley	4	nd		86	7	1.000	nd	86	86	
11-005	Wheat bran	5	nd		38	1	1.000	nd	38	38	
11-010	Cornlour	5	58	1	51	1	1.000	58	51	109	
11-015	Maize meal	3	95	16	142	2	1.000	95	142	237	
11-017	Oatmeal	5	nd		nd			nd	nd		
11-018	Oatmeal, quick cook; Quaker oats	1	nd		nd			nd	nd		
nc	Oats, rolled	5	nd		nd			nd	nd		
11-023	Sago	2	36	1	nd		1.000	36	nd	36	
11-024	Semolina	5	55	37	181	1	1.000	55	181	236	
11-025	Soy flour, CSL stock, assay no. 1		778×10 ³	4×10 ³	889×10 ³	21×10 ³	1.000	778×10 ³	889×10 ³	1667×10 ³	
11-025	Soy flour, CSL stock, assay no. 2		816×10 ³	40×10 ³	823×10 ³	49×10 ³	1.000	816×10 ³	823×10 ³	1639×10 ³	
11-025	Soy flour, Dunn IHRM 2 y average to		1037×10 ³	10×10 ³	1080×10 ³	12×10 ³	1.000	1037×10 ³	1080×10 ³	2117×10 ³	
11 007	August 1998	-									
11-027	Тарюса	5	nd	22	nd	-	1 000	nd	nd	227	
nc	Flour, brown, breadmaking	3	82	22	255	5	1.000	82	255	33/	
nc	Flour, brown, self-raising	1	2/9	11	83	24	1.000	2/9	83	362	
nc	Flour, granary	I c	82	2	31	10	1.000	82	31	113	
11-031	Flour, plain, whitewheat	5	nd		nd	•	1 000	nd	nd	170	
11-033	Flour, wholemeal	5	24		146	8	1.000	24	146	170	
nc	Wheat flakes	2	33	1	tr		1.000	33	tr	33	
11-035	Rice, brown, wholegrain, raw	5	613	24	/13	8	1.000	613	/13	1326	
11-036	Rice, brown wholegrain, boiled	5	125	2	141	3	0.337	42	48	90	
nc	Rice, long grain, white, raw	5	nd		nd			nd	nd		
11-043	Rice, long grain, white, boiled	5	/9	1	119	6	0.325	26	39	64	
nc	Pasta, lasagne, green, raw	2	24	3	81	5	1.000	24	81	105	
11-051	Pasta, lasagne, white, raw	5	21	3	31	4	1.000	21	31	52	
11-052	Pasta, lasagne, white, boiled	5	nd		nd			nd	nd		
nc	Pasta, lasagne, wholewheat, raw	3	123		95	1	1.000	123	95	218	
11-054	Pasta, macaroni, white, boiled	5	nd		nd			nd	nd		
11-055	Noodles, egg, medium, raw	4	144	/2	89	2	1.000	144	89	233	
11-056	Noodles, egg, medium, boiled	4	110	11	64	5	0.323	36	21	56	
nc	Noodies, instant, raw	4	na		48	5	1.000	na	48	48	
11-061	Pasta, spagnetti, white, raw	5	63	4	/5	12	1.000	63	/5	138	
11-062	Pasta, spagnetti, white, bolled	5	na		140	12	0.362	na	23	55	
11-063	Pasta, spagnetti, wholewheat, raw	5	na		110	14	1.000	na	110	110	
11-064	Pasta, spagnetti, wholewheat, bolled	2	127	F	120	/	1 000	127	04 04	20 221	
nc 11.071	Pasta, wholewheat (variety), raw	2	127	544	2770	260	1.000	127	94 2254	5245	
11-071	Bread, provin, pre-sliced	4	2205	122	3770	125	0.390	1112	2234	3243	
11-076	Bread, Houis wheatgarm, pro-sliced	2 1	4223	125	2002	123	0.400	2541	2244	3300	
11 102	Bread, white, pre-sliced	5	7223	386	2663	574	0.002	1256	1572	2028	
11-102	Bread, while, pre-siced Bread, wholemeal, pre-sliced	5	6287	668	7919	729	0.590	2721	1572	2720	
11-1126	Breakfast cereal: Kelloggs All Bran	1	0507 nd	000	nd	/ 50	0.504	nd	nd	0270	
11-120	Breakfast cereal; Kelloggs Bran Elakos	1	nd		nd			nd	nd		
11-120	Breakfast cereal; Kelloggs Diali Flakes	1	nd		52	0	1 000	nd	52	52	
11-129	Breakfast cereal; Kelloggs Coco-Fops	1	nd		nd	,	1.000	nd	nd		
11-130	Breakfast cereal: Kelloggs Cum Flakes	1	120	12	105	25	1 000	120	105	315	
11-133	Breakfast cereal: Kelloggs Cruticity Nut Commakes	1	nd	12	nd	25	1.000	nd	nd	515	
11 124	Breakfast cereal; Kelloggs Fruit and Eibro	1	nd		37	1	0 000	nd	37	37	
nc	Breakfast cereal: muesli style Alpen	1	tr		bd	I	1 000	tr	bd	16	
nc	Breakfast cereal: muesli, lordans natural	1	0 244	3	273	7	1,000	244	273	517	
iit.	country muesli	I I	244	ر	د 12	/	1.000	244	215	517	
nc	Breakfast cereal; muesli, Jordans original crunchy,	1	tr		nd		1.000	tr	nd		
	almonds and raisins		~ -		~~	-	0.000	~ -	~~		
nc	Breakfast cereal; muesli, Jordans special recipe muesli	1	8/	10	88	3	0.999	8/	88	175	
nc	Breakfast cereal; porridge, Scots porridge oats, raw	1	nd		43	10	1.000	nd	43	43	
11-144	dreakiast cereai; Quaker Sugar Putts	1	nd		nd			na	nd		

Table 1 continued

J Liggins et al

M&W code ^a	Food	Concentration (µg/kg dry wt)						Mean concentration (μg/kg wet weight)			
		Number of - samples	Daidzein		Genistein						
			Mean	s.e.	Mean	s.e.	DM	Da	Ge	and Ge	
11-145	Breakfast cereal; Ready Brek, raw	1	nd		nd			nd	nd		
11-146	Breakfast cereal; Kelloggs Rice Krispies	1	nd		nd			nd	nd		
11-147	Breakfast cereal; Kelloggs Ricicles	1	nd		41	4	1.000	nd	41	41	
11-148	Breakfast cereal; Nestle Shredded wheat	1	372	26	760	30	1.000	372	760	1132	
11-149	Breakfast cereal; Nestle Shreddies	1	nd		nd			nd	nd		
11-150	Breakfast cereal; Kelloggs Special K	1	nd		nd			nd	nd		
11-151	Breakfast cereal; Kelloggs Start	1	101	1	87		1.000	101	87	188	
11-153	Breakfast cereal; Kelloggs Sultana Bran	1	tr		nd		0.999	tr	nd		
11-154	Breakfast cereal; Weetabix	1	nd		nd			nd	nd		
11-167	Biscuits; Jacobs Cream Crackers	1	146	6	300	21	1.000	146	300	446	
nc	Crispbread, multigrain	4	6085	443	5788	14	1.000	6085	5788	11873	
11-168	Crispbread, rye	5	25	5	tr		1.000	25	tr	25	
nc	Crispbread, wheat	2	66	9	179	9	1.000	66	179	245	
nc	Crispbread, wholemeal wheat	4	92	22	130	27	1.000	92	130	222	
11-169	Biscuits; McVities Chocolate Homewheat	1	165	0	60	9	1.000	165	60	225	
nc	Biscuits; McVities Cheddars	1	5		76	3	1.000	5	76	81	
nc	Biscuits; Jacobs Choice Grain crackers	1	nd		61		1.000	nd	61	61	
11-170	Biscuits; McVities Digestives	1	259	62	288	9	1.000	259	288	547	
11-172	Biscuits; McVities Ginger Nuts	1	88	4	41	5	0.999	88	41	129	
nc	Biscuits; Jacobs Fig Rolls	1	140	7	167	62	0.995	139	166	306	
11-178	Biscuits; Rakusen's Matzos	1	4	6	75	12	1.000	4	75	79	
11-182	Biscuits; Custard Creams, Golden Biscuit Co.	1	290	44	113	14	1.000	290	113	403	
11-183	Biscuits: McVities Rich Tea Biscuits	1	132	3	149	7	1 000	132	149	281	

^aM&W code, food coding taken from Holland et al (1988). DM, dry matter; DA, daidzein; GE, genistein. nc, not coded in Holland et al (1988); nd, not detected in this food; tr, compound detected in unquantifiable trace concentration.

Effects unrelated to their agonist effects in estrogen receptors have also been established (Akiyama et al, 1987).

The variety of possible beneficial effects of phytoestrogens has stimulated much interest in the investigation of food intake in relation to risk of these diseases in epidemiological studies. However, little data exists on levels in foods, apart from soya for inclusion in food composition databases. We have previously published data on levels of isoflavones present in vegetables (Liggins et al, 2000b) and in fruit and nuts (Liggins et al, 2000a). Although lignans are present in cereals, no or only trace amounts of isoflavones have hitherto been reported in cereals (Than et al, 1998; Mazur & Adlercreutz, 1998). In order to investigate this further, we have analysed levels of daidzein and genistein in a variety of cereals, cereal products and three stock soy flours.

Methods

Collection and preparation of food samples

Representative examples for most cereals were obtained by purchasing five samples of each from different sources in the Cambridge area, typically two market stalls and three supermarkets. The food was weighed, any inedible matter was removed, weighed and discarded. If the food was normally eaten raw, each sample was placed in separate sealed plastic bags, and frozen at -20° C on the day of purchase for later freeze drying. Freeze drying typically took a week or more. Thereafter the samples were weighed, milled with a kitchen grinder (model BL350, Kenwood Ltd, Havant, Hampshire, UK) and stored in separate air-tight jars. Further desiccation was performed before the samples were assayed. If the food was normally eaten cooked, each prepared sample was split equally into two, and half was prepared as for the raw food samples. The remaining half of each sample were pooled with the other four samples. The foods were boiled for a defined time, drained, frozen and freeze dried in the same manner as the raw foods.

The breakfast cereals and biscuits were from single packets of brand-named goods purchased in a supermarket. If the food was a brand good made by only one manufacturer then only one sample would be purchased. Where the food was more generic then five distinct samples were purchased. Exceptions to the latter were where the food list specified branded goods because they were the market leader at the time the list was made, eg Kellogg's Cornflakes.

Quantification of daidzein and genistein in food The protocol for the extraction of daidzein and genistein from food and their subsequent quantification has been

967

published elsewhere (Liggins *et al*, 1998). This article contains only a brief description of the assay method including any slight modifications used for the assay of the foods.

All enzymes, reagents and chemicals were purchased from Sigma/Aldrich, Poole, Dorset, UK, unless otherwise stated. In order to inhibit losses of target compounds by adsorption, all glassware was silanized in a solution of dimethyldichlorosilane in heptane (1:20 v/v), followed by deactivation of excess reagent in methylated spirits and oven drying (120° C).

A pooled example of each raw food type was prepared for assay by weighing 0.5 g of each of the five freeze dried samples into a single 20 ml screw cap test tube (2.5 g in total). Since the cooked foods were pooled at an earlier stage, 1g of the freeze dried product was weighed into a similar tube. Five replicates of each of these pooled foods were prepared, one of which was assayed in advance of the others without internal standards to approximate the daidzein and genistein content. As reported elsewhere (Liggins et al, 1998) the synthetic glucosides, daidzin (7-O-glucosyl-4'hydroxyisoflavone) and genistin (7-O-glucosyl-4 5-dihydroxyisoflavone; both purchased from Plantech (UK), Reading University, UK) were used as the internal standards spiked into two of the replicates of each food type. The spike was calculated to deliver the same concentration of daidzein and genistein as was already in the food. The two remaining replicate samples were unspiked and assayed as sample blanks. The difference in the average isoflavone concentration of the two spiked samples and the sample blanks was used to calculate the recovery of the internal standards.

The isoflavone glycosides present in both the food and the spike were dissolved into at least 10 ml aqueous methanol (4:1 v/v) using 15 min of sonication to break up cellular material, followed by overnight soaking in the solvent. Insoluble material was filtered off through a double layer of filter paper (Whatman no. 4 on top of no. 1), and any adsorbed isoflavones washed through with fresh aqueous methanol (4:1 v/v, > 5 ml). The alcohol in the filtrate was evaporated off, under nitrogen, to leave an aqueous extract, to which was added 5 ml of 0.1 M acetate buffer, pH 5, containing 100 Fishman units of cellulase (Aspergillus niger). The mixture was incubated overnight at 37°C to hydrolytically remove the carbohydrate component of the hydrolysis solution by partitioning into ethyl acetate; three 2 ml washes of ethyl acetate were combined, 2 ml of the total was aliquoted into a separate vial and the solvent evaporated under nitrogen.

The dried extracts were derivatized by adding 0.6 ml pyridine followed by 0.4 ml *N*-(tert-butyldimethylsilyl)-*N*-methyltrifluoro-acetamide (TBDMS) containing 1% TBDMS-chloride catalyst. After 1 h at room temperature, 3μ l of the sample were injected on to the capillary column of the gas chromatograph mass spectrometer (GC-MS, MD800, Fisons, UK). The GC-MS conditions used were as described elsewhere (Liggins *et al*, 1998).

European Journal of Clinical Nutrition

Calculation of isoflavone quantities in food

The daidzein and genistein concentration of each extracted sample was determined by comparison with pure authentic reference standards (Apin Chemicals Ltd, Abingdon, Oxon, UK), run simultaneously on the GC-MS. The recovery of the internal standards was used both to assess the completeness of the extraction protocol and adjust the concentration of isoflavones determined to be in the food to account for any procedural losses. If the recovery of the internal standards fell below 70% due to losses in the extraction procedure, results were not reported and the analysis was repeated. The standard error from the mean (reported in the results) was calculated from the assay initially employed to determine the concentration of internal standards, and the average of the two subsequent unspiked assays, performed on another day.

Wet weight concentrations of daidzein and genistein were calculated from the percentage dry matter in the food and the assayed dry weight concentration.

Results

Of the 78 assayed foods reported in this article, 57 contained measurable quantities of daidzein and/or genistein. Three additional foods contained trace quantities. Table 1 illustrates the daidzein and genistein content of food (by both dry and wet weight). The foods are listed in the order of their codes in the supplement to the McCance and Widdowson's *Composition of Foods* (Holland *et al*, 1988). A number of the foods assayed have not yet been assigned codes but are listed in the results in an appropriate position.

Within the group of 57 foods that contain daidzein and genistein, the soy flours contained the most, 1.6-2.1 mg/g of the two isoflavones combined. The five breads and crisp-bread contained more than $1 \mu g/g$, but less than 0.1 mg/g of daidzein and genistein combined. These foods are likely to contain soy flour as a minor ingredient. Wholegrain brown rice and shredded wheat also contained more than $1 \mu g/g$ food. Foods containing more than 100 ng/g but less than $1 \mu g/g$ varied and comprised raw pasta, brown, granary and wholemeal flours, some breakfast cereals, biscuits and crisp-breads, and cereal grains such as semolina cornflour and maize meal. The lowest range of concentrations, less than 100 ng/g, comprised a varied selection of 20 foods, including cooked pasta and rice, other cereal grains, biscuits and breakfast cereals.

Discussion

The cereal foods, collected and assayed during the course of this work, were selected because they are commonly eaten in Europe. In order to minimize sampling error a pooled sample of each food was assayed and the results reported in this article are the average concentration of five samples of each non-branded food.

964

This publication Other publications Daidzein Genistein Daidzein Genistein Food Reference Bread, white 135.6 157.2 606.0 830.8 Horn-Ross et al (2000) Bread, whole grain 373.1 456.7 155.8 141.8 Horn-Ross et al (2000) 0/tr Oatmeal nd nd 0/tr Horn-Ross et al (2000) 0 0 Adlercreutz & Mazur (1997) Wheat bran nd 3.8 3.5 6.0 Adlercreutz & Mazur (1997) 0 Whole wheat flour 2.4 14.6 0 Adlercreutz & Mazur (1997) Rice, brown, boiled 0/tr 0/tr 4.2 4.8 Horn-Ross et al (2000) 3.9 Rice, white, boiled 2.6 0/tr 0/tr Adlercreutz & Mazur (1997)

Table 2 Comparison of daidzein and genistein concentration (µg/100 g) in cereals with results published elsewhere

The analytical data presented in Table 1 indicate that there are a number of possible sources of dietary daidzein and genistein. The richest sources are of soy origin, containing 1.6-2.1 mg/g as shown elsewhere (Reinli & Block 1996; Murphy *et al*, 1999; Franke *et al*, 1999; Wakai *et al*, 1999) Five types of bread contained between $1 \mu \text{g}$ and 0.1 mg of daidzein and genistein combined per gram wet weight of food. This is probably because soy flour is included as an ingredient of bread, since the daidzein and genistein content of flours only ranged from not detected to 362 ng/g. Raw whole grain brown rice and shredded wheat also had concentrations in this range. Whole grain brown rice would have had no added soy, thus it is in itself a source of daidzein and genistein.

These results were obtained without the use of labelled conjugated standards, since these are currently not available. In the absence of these to determine possible losses during the hydrolysis and extraction procedure, unlabelled conjugated pure compounds were added in known amounts in the second analyses (by the standard addition method) and the expected amount recovered compared with that observed. Although only results from analyses where more than 70% of the addition was recovered were obtained, this is not an entirely satisfactory way of determining accuracy since losses incurred will depend largely on the intact food matrix and the position and link type of the glycoside residue. Results published here were compared with results published elsewhere in Table 2. There was good agreement between analytical results for all foods except bread. Levels were higher in white bread and lower in wholemeal bread analysed in the US than in the UK. This probably results from different usage of soy in bread in these two countries. Nevertheless, good agreement with results published elsewhere, although reassuring, is not absolute proof of accuracy and future developments may result in improvements to the analytical method used.

The study reported in this article has concentrated on quantifying two phytoestrogens in cereals, in order that they can be included in databases of food composition. In this respect identification of foods that contain no daidzein and genistein is as important as knowledge of their concentrations in foods that do contain these phytoestrogens. Obviously other phytoestrogens and foods are consumed by the UK and world populations. The results presented in this article represent initial research aimed at elucidating the health implications of daidzein and genistein and will be of use in epidemiological and prospective studies. Future research should include quantification of other phytoestrogens both in the foods analysed in this article and others.

Acknowledgements

The authors would like to thank the following people: Dr L Bluck, Mrs M Harding, Mr K Jones, Miss N Duffy, Miss E Neeley, Miss C Jeffray, Miss L Keppel, Miss A Lam and Miss S Barker for their technical and scientific assistance.

References

- Adlercreutz H & Mazur W (1997): Phyto-oestrogens and Western diseases. Ann. Med. 29, 95–120.
- Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M & Fukami Y (1987): Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592– 5595.
- Bingham SA, Atkinson C, Liggins J, Bluck L & Coward A (1998): Plant oestrogens: where are we now? Br. J. Nutr. 79, 393-406.
- Franke AA, Hankin JH, Yu MC *et al* (1999): Isoflavone levels in soyfoods consumed by multiethnic populations in Singapore and Hawaii. *J. Agric. Food Chem.* **47**, 977–986.
- Holland B, Unwin ID & Buss DH (1988): Cereals and Cereal Products: Third Supplement to McCance and Widdowson's The Composition of Foods (4th edn). Cambridge: Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food.
- Horn-Ross PL, Barnes S, Lee M, Coward L, Mandel JE, Koo J, John EM & Smith M (2000): Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). *Cancer Causes Control* 11, 289–298.
- Kuiper G, Lemmen JG, Carlsson B, Corton JC, Safe SH, Vander Saag PT, Vander Burg P & Gustafsson JA (1998): Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. *Endocrinology* 139, 4252–4263.
- Liggins J, Bluck LJC, Coward WA & Bingham SA (1998): Extraction and quantification of daidzein and genistein in food. *Anal. Biochem.* **264**, 1–7.
- Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA & Bingham SA (2000a): Daidzein and genistein content of fruit and nuts. J. Nutr. Biochem. 11, 326-331

- Liggins J, Bluck LJC, Runswick S, Atkinson C, Coward WA & Bingham SA (2000b): Daidzein and genistein content of vegetables *Br. J. Nutr.* **84**, 717–725.
- Mazur W & Adlercreutz H (1998): Natural and anthropogenic environmental phytoestrogens: the scientific basis for risk assessment. Naturally occuring oestrogens in food. *Pure Appl. Chem.* **70**, 1759– 1776.
- Murphy PA, Song T *et al* (1999): Isoflavones in retail and institutional soy foods. *J. Agric. Food Chem.* **47**, 2697–2704.
- Reinli K & Block G (1996): Phytoestrogens content of foods. Nutr. Cancer 26, 123-148.
- Setchell KDR & Adlercreutz H (1988): Mammalian lignans and phytoestrogens In: *The Role of the Gut Flora in Toxicity and Cancer*, ed. I Rowland, London: Academic Press.
- Setchell KDR, Gosselin SJ, Welsh MB *et al* (1987): Dietary estrogens a probable cause of infertility and liver disease in captive cheetah. *Gastroenterology* **93**, 225 233.

- Shutt DA (1976): The effects of plant oestrogens on animal reproduction. *Endeavor* **35**, 110–113.
- Shutt DA & Cox RI (1972): Steroid and phytoestrogen binding to sheep uterine receptors in vivo. *J. Endocrinol.* **52**, 299–310.
- Tang BY & Adams NR (1980): Effects of equol on oestrogen receptors and on synthesis on DNA and protein in the immature rat uterus. *J. Endocrinol.* **85**, 291–297.
- Than DM, Gardner CD & Haskell WL (1998): Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological and mechanistic evidence. *J. Clin. Endocrinol. Metab.* **83**, 2223–2235.
- Wakai K, Egami I, Kato K, Kawamura T, Tamakoshi A, Lin Y, Nakayama T, Wada M & Ohno Y (1999): Dietary intake and sources of isoflavone among Japanese. *Nutr. Cancer* 33, 129–154.

966