Review | Published:

Tea consumption and iron status

European Journal of Clinical Nutrition volume 56, pages 379386 (2002) | Download Citation

Subjects

Abstract

Objective: To give an overview of the association between tea consumption and iron status.

Methods: A PUBMED search was performed (up to June 2001) for all publications containing the words: tea and ferritin, h(a)emoglobin, iron status or an(a)emia. Sixteen studies were evaluated in groups with high (infants, children and premenopausal women) or low prevalence of iron deficiency (men and the elderly).

Results and Discussion: Of the 16 studies reviewed, six included infants and children, six premenopausal women, two men and two the elderly. In study groups with high prevalence of iron deficiency, tea consumption was inversely associated with serum ferritin and/or haemoglobin. The association disappeared when adjusting for confounding (dietary) factors, except for one study including 40% of iron deficient women. In groups with low prevalence of iron deficiency, tea consumption was not inversely associated with serum ferritin and/or haemoglobin. In those at risk for iron overload, such as middle-aged men, tea consumption may lower serum ferritin concentrations as reported in one study. This finding awaits further confirmation.

Conclusion: This overview shows that tea consumption does not influence iron status in Western populations in which most people have adequate iron stores as determined by serum ferritin concentrations. Only in populations of individuals with marginal iron status does there seem to be a negative association between tea consumption and iron status.

Introduction

Iron deficiency affects in particular infants, children, teenagers, pregnant and lactating women and women of child-bearing age (Beaton, 1974; Murray & Lopez, 1996) and iron overload mainly middle-aged men (Milman et al, 1999). Physiological iron demands are high in periods of tissue growth during early childhood and adolescence, because of losses of blood and surface cells of the gut, and in women during the reproductive years (Cook, 1990). Serum ferritin, a sensitive marker of the fullness of iron stores, is considered to be the best available index for iron status. In the earliest phase of iron deficiency this iron storage is gradually depleted. A serum ferritin concentration lower than 12 and 10 µg/l for children younger than 6 y indicates exhausted iron stores or iron deficiency (Bender & Bender, 1997; MacPhail, 1998) and concentrations higher than 200 µg/l (women) or 300 µg/l (men) elevated iron stores (Fleming et al, 2001). Once iron stores have become depleted, ferritin concentrations no longer reflect the severity of the iron lack and other measures such as haemoglobin concentrations must be added to diagnose iron deficiency anaemia. Measures of haemoglobin alone are relatively insensitive to iron depletion as concentrations are also reduced in the presence of chronic infection or inflammation regardless of iron status. High serum ferritin alone might indicate underlying disease processes, as ferritin is a positive acute phase protein (Gabay & Kushner, 1999). This may be especially important in the elderly.

In Western populations 10–20% of the infants and children up to 2–4 y (Gibson, 1999; Looker et al, 1997; Thane et al, 2000) and of premenopausal women (Galan et al, 1985; Looker et al, 1997; Soustre et al, 1986) are iron deficient and about 3% (Galan et al, 1985; Gibson, 1999; Looker et al, 1997; Soustre et al, 1986; Thane et al, 2000) iron deficient anaemic, with higher risk in minority and poverty groups (Looker et al, 1997). In men and in the elderly, the prevalence of iron deficiency and iron deficiency anaemia is low (below 3%; Looker et al, 1997). Thirteen percent of the elderly (Fleming et al, 2001) and 18% (Milman et al, 1999) of men can be classified as iron overloaded. The body has adaptation mechanisms to prevent deficiency or excess of iron stores by regulating mucosal iron absorption according to one's iron stores, increasing absorption when iron stores are depleted and reducing absorption as iron stores are repleted (Cook, 1990). The body is more capable in regulating the absorption of non-haem than haem iron. Polyphenol-containing beverages, such as tea, reduce non-haem iron bioavailability by the formation of insoluble complexes (Brune et al, 1989; Disler et al, 1975; Reddy et al, 2000). However, this does not necessarily mean that high tea consumption is associated with an unfavourable iron status at the population level. This review describes the association between tea consumption and iron status and is presented in groups in which high or low prevalence of iron deficiency was expected because of higher iron requirements in infants, children and women than in men and the elderly.

Methods

Human studies were evaluated for the association between tea consumption and iron status. We did not perform a meta-analysis, because not enough studies on the relation between tea consumption and iron status have been performed. Instead, we presented an overview of studies published, retrieved from PUBMED up to June 2001. The search was restricted to papers published in English. Full publications as well as abstracts are included in the overview; no attempt was made to search for unpublished results. Some publications or abstracts were retrieved through scanning relevant reference lists of articles. The keyword ‘tea’ was always included in the search. In addition, we considered as outcome measure for iron status the keywords ‘(serum) ferritin’ and/or ‘h(a)emoglobin’ or more generally described as ‘iron status’ or ‘an(a)emia’. The association of tea consumption with serum ferritin and/or haemoglobin had to be reported in the result section of the publication to be included in this overview.

The review is organised according to groups with expected high (infants, children and premenopausal women) and low (men and the elderly) prevalence of iron deficiency and within those groups according to iron status of the study sample. Two studies were not included in the overview because analyses were not stratified according to these groups (Mehta et al, 1992; Yen & Su, 1999). Iron status of each study population was characterised by the percentage of iron deficient (ID) and/or iron deficient anaemic (IDA) subjects. When this figure was absent in the publication, the percentage of anaemic (A) subjects was given. The dietary assessment method was retrieved as well as the main dietary factors important for iron intake/bioavailability such as dietary iron, percentage of haem iron and vitamin C intake. If these data were not given, the intake of meat and vegetables and fruit was reported instead. Tea consumption was calculated as ml/day when possible, but in some references tea intake was given as cups/day, times/week, g/day. When tea consumption was analysed together with coffee consumption it was indicated in the table and when possible the type of tea was given. The association of tea consumption with iron status (concentrations of serum ferritin or haemoglobin) is presented in the tables in the way it was described in the publication. It was stated which factors the association between tea consumption and iron status was controlled for. We evaluated the studies taking into account the study design, sample size, type of population, quality of dietary and iron status assessment and quality of data analysis.

Results

Infants and children

Studies addressing the relationship between tea consumption and iron status in infants and children are summarised in Table 1. Of the six studies found, three studies were carried out within the UK, a high tea consuming country. Two of them (Gibson, 1999; Thane et al, 2000) used data of the UK National Diet and Nutrition Survey (NDNS) to evaluate the association between tea drinking and iron status in children aged 1.5 to 4.5-y-old. Twenty percent of the children were iron deficient, 8% anaemic and 3% iron deficient anaemic. Gibson's cross-sectional study (Gibson, 1999) focused on the relationship between consumption of breakfast cereals and iron intake/status and observed a small inverse association (r=−0.09) between tea consumption and serum ferritin, but did not adjust for possible confounding factors. In a later study with NDNS data (Thane et al, 2000) tea consumption, included in the model as a binary variable, was not significantly associated with serum ferritin and/or haemoglobin concentrations after adjusting for age and gender. Another study (Cowin et al, 2001) compared haemoglobin and ferritin concentrations of children who did or did not consume various food groups. Tea consumption was not associated with low haemoglobin or ferritin concentrations. The amount of cow's milk and calcium was negatively associated with serum ferritin and low energy-adjusted vitamin C and/or low consumption of meat and poultry with low haemoglobin concentrations, after adjustment for confounding factors. This study (Cowin et al, 2001) is well performed including a large number of children (n=701) and applying a 3 day record for food consumption assessment. The factors that remained in the model to predict high serum ferritin concentrations were high mothers' parity, absence of recent infections, high birth weight, high energy adjusted intakes of non-haem iron, high vitamin C and low calcium intakes (Cowin et al, 2001). Two case–control studies (Kuvibidila et al, 1992; Merhav et al, 1985) focused on the relationship between tea consumption and the prevalence of anaemia without determining the iron deficiency status specifically with serum ferritin measurements. Both studies observed (Kuvibidila et al, 1992; Merhav et al, 1985) that anaemia, as determined by haemoglobin concentrations only, is more prevalent among tea drinking infants than among non-tea drinkers, even with a longer period of beef and poultry feeding in the tea group (Merhav et al, 1985) or adjusting for episodes of sickness (Kuvibidila et al, 1992). Differences in other dietary factors than tea were, however, not reported (Kuvibidila et al, 1992; Merhav et al, 1985) and the low weight suggested a lower total energy intake in tea drinkers in the Zairian study (Kuvibidila et al, 1992). In a study from New Zealand (Wilson et al, 1999) in 206 hospitalised children of whom 29% were iron deficient, the diets of 69% of the anaemic children included factors which may have contributed to their iron deficiency such as early introduction of cow's milk, late introduction of meat or regular consumption of tea (eight children drank tea). The investigators, however, did not study the presence of dietary factors in a non-anaemic (control) group of children. From this study it is, therefore, not possible to clarify whether and how the dietary factors really correlated with iron status.

Table 1: Tea consumption and iron status in infants and children

Women

Table 2 summarises studies that investigated the association between tea consumption and iron status in women. No significant associations between high tea consumption and low iron status parameters were found in a European study (Van de Vijver et al, 1999) and in a Chinese study (Root et al, 1999) with a low percentage of iron deficient women. The cross-sectional study (Van de Vijver et al, 1999) among European girls (n=1080; mean 13.5 y) and young women (n=524; mean 22.0 y) from six countries focused on the association between calcium intake and iron status. Tea and coffee consumption was not significantly associated with serum ferritin. The Chinese study (Root et al, 1999) showed that women can adapt successfully to a wide range of iron intakes and bioavailability. Root et al, (1999) examined the iron status of middle-aged Chinese women (n=400; 32–66 y old) randomly selected from five counties in rural China. Twenty percent of these women were postmenopausal. The women consumed diets rich in non-haem iron and low in vitamin C. The level of intake of black tea, even in very high amounts (9–38 g dry tea per day) and dietary fibre were not associated with any measure of iron status.

Table 2: Tea consumption and iron status in women (w)

A negative association between tea (and coffee) consumption and iron status (mainly measured by serum ferritin) was observed in studies including a large percentage of iron deficient women (Galan et al, 1985; Pate et al, 1993; Razagui et al, 1991). The cross-sectional studies (Galan et al, 1985; Soustre et al, 1986) included women in the same age range (16–53 y) and with similar percentages of iron deficient subjects (16 and 21%, respectively). In both studies, the duration of menses inversely correlated with serum ferritin concentrations, while dietary iron intake did not significantly correlate with serum ferritin. Both tea and dairy products inversely correlated with serum ferritin concentrations (r=−0.18 and r=−0.20 respectively, Galan et al, 1985). This result was not adjusted for intakes of other foods that could have affected iron bioavailability. The significant association might have disappeared since intakes of coffee and dairy products, but not tea consumption, inversely associated with serum ferritin, after controlling for all other foods and beverages (Soustre et al, 1986).

Two studies included more than 40% iron deficient women (Pate et al, 1993; Razagui et al, 1991). Only 15 mentally handicapped women aged 28 y (range 19–43 y old) with mean daily iron intake of 9.5±1.5 mg (range from 6 to 11.7 mg/day) were investigated (Razagui et al, 1991). Tea intake with meals was higher in iron deficient women (563 ml/meal/day), compared to women with sufficient iron stores (184 ml/meal/day), whereas vitamin C intake with meals was lower. Tea consumption at meal times was significantly negatively correlated with serum ferritin concentrations (r=−0.67; all subjects combined) and positively with vitamin C intake (r=0.71; all subjects combined). However, these correlations were not adjusted for differences in other dietary variables. In female long-distance runners (n=111) and inactive women (n=65) with a mean age of 29 y, 50% of the runners and 22% of the inactive group were iron deficient (Pate et al, 1993). No significant differences were found between the two groups in mean dietary intake of iron, vitamin C, coffee and tea or plant food products. The runners consumed significantly fewer meat products per week (P<0.01), more fibre and a higher percentage of energy from carbohydrates. Coffee and tea intake and minutes run per week were significantly, independently and negatively associated with serum ferritin concentrations (total group).

Men

The association between tea intake and iron status was addressed in two studies (Hunt & Roughead, 2000; Imai & Nakachi, 1995), of which one was an experiment (Hunt & Roughead, 2000; Table 3). The parallel designed experiment (Hunt & Roughead, 2000) in 31 healthy men (age≥32 y) showed successful adaptation of iron absorption to diets with low iron bioavailability containing tea (from 1 g dry, black instant) with each meal. Serum ferritin and the other blood indexes of iron status were insensitive to the 12 week diets with low or high iron bioavailability. Faecal ferritin excretion changed within a few days in response to differences in dietary iron bioavailability. The cross-sectional Japanese study (Imai & Nakachi, 1995) including 1371 Japanese men aged 40 y and above suggested positive effects of green tea on iron status as well as lipid peroxidation. Lower serum ferritin, haemoglobin and lipid peroxide concentrations were observed among men consuming more than 10 cups of green tea compared with less than three cups a day after controlling for age, cigarette smoking and alcohol consumption. We assume that the unit given in Table 4 of this publication is misprinted (µg/l instead of mg/l). Concentrations of lipid peroxides in smokers reduced to levels of non-smokers when they consumed more than 10 cups of green tea a day. Serum ferritin and lipid peroxide concentrations were significantly associated (r=0.25, P<0.001). Dietary iron intake and enhancers or inhibitors of iron absorption were not included in the study.

Table 3: Tea consumption and iron status in men
Table 4: Tea consumption and iron status in the elderly

Elderly women and men

The relationship between food consumption, inclusive of tea, and biochemical markers of iron status was investigated in elderly persons in two studies (Table 4; Doyle et al, 1999; Roebothan & Chandra, 1996). In the National Diet and Nutrition Survey (n=1268; Doyle et al, 1999) 10% of the free-living and 45% of the institutionalised seniors were found to be anaemic. Ninety-five percent of the participants consumed tea. Tea consumption was negatively associated with haemoglobin concentrations in men. Tea consumption was positively associated with energy intake and may be associated with a higher level of social activity of the seniors. For high serum ferritin, high intake of vegetables and low dairy foods were the best predictors. Roebothan (Roebothan & Chandra, 1996) studied 127 elderly (33 men and 94 women) above the age of 60 y. Dietary intakes of haem iron, ascorbic acid, calcium, dietary fibre and also of tea and coffee were not significantly different in seniors with adequate (n=108) compared with inadequate (n=19) iron stores. The sample size of this study was relatively small. The two studies do not provide evidence for an inverse association between tea consumption and iron status in the elderly. Tea drinking in the two studies is associated with a good social life and a higher energy intake.

Discussion

A wide variety of studies with different designs, from different countries, and carried out in different age and gender groups, addressed the association between tea consumption and iron status. All studies, except for one in China and one in Zaire, were carried out in Western populations. The conclusions are mainly based on cross-sectional studies determining tea consumption on the one and iron status on the other hand. Most studies addressed the effects of a variety of dietary factors, among them tea, that could affect iron status and calculated correlation factors between tea consumed and serum ferritin (Doyle et al, 1999; Galan et al, 1985; Gibson, 1999; Pate et al, 1993; Root et al, 1999; Soustre et al, 1986; Van de Vijver et al, 1999). These analyses were carried out with (Doyle et al, 1999; Pate et al, 1993; Root et al, 1999; Soustre et al, 1986) or without (Galan et al, 1985; Gibson, 1999; Van de Vijver et al, 1999) adjusting for other iron bioavailability factors. Other case–control studies (Kuvibidila et al, 1992; Mehta et al, 1992; Merhav et al, 1985; Razagui et al, 1991; Roebothan & Chandra, 1996) compared iron deficient (or anaemic) cases with non-iron deficient (and/or non-anaemic) controls with respect to tea consumption and other dietary habits. Only one experimental study in men was available for this overview. The sample size in general was acceptable except for the study of Razagui and co-workers (Razagui et al, 1991).

Main factors determining the strength of the association between tea consumption and iron status, are the mean iron status of the population under study and the adjustment for confounding factors. Iron absorption rates are higher in iron deficient subjects (with low serum ferritin concentrations) compared with subjects with sufficient iron stores. In populations including a high proportion of these subjects, therefore, it is more likely to observe significant associations of iron status parameters with enhancers and inhibitors of iron bioavailability. For calculating iron absorption from the diet, taking into account serum ferritin levels, newly developed algorithms can be applied (Hallberg & Hulthen, 2000). Besides factors such as social class or recent illnesses that may confound the association between tea consumption and iron status, dietary factors other than tea consumption alone influence iron intake and bioavailability and must be taken into account. In the children from the UK studies (Cowin et al, 2001; Gibson, 1999; Thane et al, 2000) and all Western women study populations (Galan et al, 1985; Pate et al, 1993; Razagui et al, 1991; Soustre et al, 1986; Vijver et al, 1999) the average iron intake was below the recommended daily allowances. Comparing anaemic with non-anaemic subjects, diets were, in addition, lower in vitamin C (Razagui et al, 1991; Roebothan & Chandra, 1996). The studies that found a negative association between tea consumption and iron status (Galan et al, 1985; Gibson, 1999; Razagui et al, 1991) or anaemia (Kuvibidila et al, 1992; Merhav et al, 1985), except for the study of Pate et al (1993) did not adjust for differences in iron intake and other iron bioavailability factors. Recent experimental work suggests that not polyphenols, but animal tissue (beef, poultry and seafood), phytic acid and vitamin C might be the most important factors determining iron bioavailability (Reddy et al, 2000). Those factors should be taken into account when addressing the association between tea consumption and iron status.

In conclusion, this overview shows that tea consumption does not influence iron status in Western populations in which most people have adequate iron stores as determined by serum ferritin concentrations. Only in populations of individuals with marginal iron status, there seems to be a negative association between tea consumption and iron status.

References

  1. . 1974 Epidemiology of iron deficiency In Iron in Biochemistry and Medicine, ed. A Jacobs & M Worwood 477–528 London: Academic Press

  2. , . 1997 Iron In Nutrition: A Reference Handbook 394–406 New York: Oxford University Press

  3. , , . 1989 Iron absorption and phenolic compounds: importance of different phenolic structures Eur. J. Clin. Nutr. 43: 547–557

  4. . 1990 Adaptation in iron metabolism Am. J. Clin. Nutr. 5l: 301–308

  5. , , , . 2001 Association between composition of the diet and haemoglobin and ferritin levels in 18-month-old children Eur. J. Clin. Nutr. 55: 278–286

  6. , , , , , , . 1975 The effect of tea on iron absorption Gut 16: 193–200

  7. , , , . 1999 Iron deficiency in older people: interactions between food and nutrient intakes with biochemical measures of iron; further analysis of the National Diet and Nutrition Survey of people aged 65 y and over Eur. J. Clin. Nutr. 53: 552–559

  8. , , , , , , . 2001 Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores Am. J. Clin. Nutr. 73: 638–646

  9. , . 1999 Acute-phase proteins and other systemic responses to inflammation New Engl. J. Med. 340: 448–454

  10. , , , , . 1985 Factors affecting iron stores in French female students Hum. Nutr. Clin. Nutr. 39C: 279–287

  11. . 1999 Iron intake and iron status of preschool children: associations with breakfast cereals, vitamin C and meat Public Health Nutr. 2: 521–528

  12. , . 2000 Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron Am. J. Clin. Nutr. 71: 1147–1160

  13. , . 2000 Adaptation of iron absorption in men consuming diets with high or low iron bioavailability Am. J. Clin. Nutr. 71: 94–102

  14. , . 1995 Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases Br. Med. J. 310: 693–696

  15. , , , , . 1992 The influence of tea consumption on iron status and anthropometry in young Zairean children Clin. Res. 40: 631A–

  16. , , , , . 1997 Prevalence of iron deficiency in the United States JAMA 277: 973–976

  17. . 1998 Iron In Essentials of Human Nutrition ed. J Mann & A Truswell (eds) New York: Oxford University Press 137–149

  18. , , . 1992 Contribution of coffee and tea to anemia among NHANES II participants Nutr. Res. 12: 209–222

  19. , , , . 1985 Tea drinking and microcytic anemia in infants Am. J. Clin. Nutr. 41: 1210–1213

  20. , , , . 1999 Iron status in Danes updated 1994. I: prevalence of iron deficiency and iron overload in 1332 men aged 40–70 y. Influence of blood donation, alcohol intake, and iron supplementation Ann. Hematol. 78: 393–400

  21. , . 1996 In Global Health Statistics: a Compendium of Incidence, Prevalence and Mortality Estimated for Over 2000 Conditions Geneva: WHO

  22. , , , , . 1993 Iron status of female runners Int. J. Sport Nutr. 3: 222–231

  23. , , , . 1991 Iron status in a group of long-stay mentally handicapped menstruating women: some dietary considerations Eur. J. Clin. Nutr. 45: 331–340

  24. , , . 2000 Estimation of nonheme-iron bioavailability from meal composition Am. J. Clin. Nutr. 71: 937–943

  25. , . 1996 The contribution of dietary iron to iron status in a group of eldery subjects Int. J. Vit. Nutr. Res. 66: 66–70

  26. , , , . 1999 Iron status of middle-aged women in five counties of rural China Eur. J. Clin. Nutr. 53: 199–206

  27. , , , . 1986 Dietary determinants of the iron status in menstruating women Int. J. Vit. Nutr. Res. 56: 281–286

  28. , , , , . 2000 Risk factors for poor iron status in British toddlers: further analysis of data from the National Diet and Nutrition Survey of children aged 1.5–4.5 y Public Health Nutr. 3: 433–440

  29. , , , , , , , , . 1999 Calcium intake is weakly but consistently negatively associated with iron status in girls and women in six European countries J. Nutr. 129: 963–968

  30. , , . 1999 Iron deficiency anaemia and adverse dietary habits in hospitalised children N.Z. Med. J. 112: 203–206

  31. , . 1999 Tea consumption is inversely associated with iron status in serum Am. J. Epidemiol. 149: 259

Download references

Acknowledgements

The authors thank Dr Jianjun Zhang, Dr Evert Schouten and Dr Hugo Kesteloot for critically evaluating the manuscript. This study was supported by a grant from the Unilever Chair in Nutritional Epidemiology.

Author information

Author notes

    • EHM Temme

    Guarantor: EHM Temme.

    • EHM Temme
    •  & PGA Van Hoydonck

    Contributors: EHMT initiated the study and together with PGAVH participated in the collection, selection and critical evaluation of the publications overviewed. PGAVH prepared the first draft of the manuscript and was involved in the refinement of the final drafts prepared by EHMT. Both contributors participated intellectually in the development of the paper.

Affiliations

  1. KU Leuven, Department of Public Health, Division of Nutritional Epidemiology, Leuven, Belgium

    • EHM Temme
    •  & PGA Van Hoydonck

Authors

  1. Search for EHM Temme in:

  2. Search for PGA Van Hoydonck in:

Corresponding author

Correspondence to EHM Temme.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/sj.ejcn.1601309

Further reading