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Elimination of Divergencies in Quantum Electrodynamics and
in Meson Theory

A DIVERGENCE-FREE theory of the classical electron has been given
by Wentzel, and then, with other methods, by Dirac. In quantum
theory these methods give an elimination of part of the infinite
expressions. Making further the assumption of positive- and negative-
energy photons, Dirac eliminates all the infinite expressions.

The theory of the radiating classical electron is governed by the
wave equation. Hadamard gave by his concept of ‘partie finie’ a
meaning to divergent integrals which appear in the formal solution
of the wave equation. M. Riesz! gave a new mathematical treatment
of the wave equation, showing that the divergent integrals can be
avoided. This method of solution applied fo the electron gives an
equation of motion which is identical with Dirac’s equation for the
classical electron. Applications of the method to the classical theories
%1; th% ele;:trqmagnetic and meson fields are described in a paper by

emberg?®.

We will now use these mathematical methods in quantum theory,
treating as examples expressions, for example, the interaction energy,
where divergencies appear already in second approximation when
using ordinary methods. We use the formalism in which the dynamical
equations are operator equations, giving the variation with ¢ of the
matrices. We treat first the interaction of a nucleon fleld y, which
satisfles Dirac’s wave equation, and a scalar meson fleld d.
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We assume the usual commutation relations. Using second quantiza-
tion for the nucleon matrix wave function w(z,t), we expand v in a
series of plane waves with matrix coefficients an(f). We discuss the
self-energy terms in second approximation, first the term

Wy = %iffdew*Mﬂ@l.

Here ®! satisfies the meson equation with the right-hand member
—yo*By°, The solution of this equation by analytical continuation
according to Riesz is
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Here rpq is the Lorentz-distance between the four-dimensional
points P and Q. The integration over dQ = (cdtdz,dz.dx;)Q is taken
over the whole four-dimensional domain bounded by the retrograde
light-cone with its top at P and by the space S at the time { = T
(in the meson case 7' = — ).

®!'2js ananalytical function of a. The solution of the meson equation
is obtained by analytical continuation in a to a = 2 (see refs. 1 and 2).
‘We insert ¢*a into W, and get an expression W2, Neglecting the
retardation and retaining the terms not zero in the one-nucleon case,
weifind in the integrand of W,2 a sum

% exp(% kn (Xp — XQ)) =3 (Xp — Xg).
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The integral is convergent for 3 < a < 5 and is for these a’s equal to
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This expression, and therefore W,4, can be continued analytically
to all a. Now ! has to be a solution of the meson wave equation.
This is achieved by putting @ = 2. So we find that W, or the energy
(when neglecting the retardation) of the meson fleld created by a
point nucleon has a finite value g2x/8r. 5

We make a comparison with the electrostatic energy of a point
charge. The equations for this case are obtained by substituting in
the interaction terms 1 and —1 for the first and second 8, respectively,
which only alters the sign of the energy, and then by putting » = 0.
Thus we find the value zero for the electrostatic energy'of a point
charge. We have also found this value in another way®. .

We proceed to the other self-energy term of second approximation,
the integrand of which is (p'*By® +y°*fy!)@°. It is the energy of the
forced oscillations of the nucleon produced by the meson vacuum
field fluctuations. When assuming Dirac’s theory of positive- and
negative-energy mesons, the divergence diminishes by one order. A
fuller account of the meson case will be given elsewhere®.

We wish to stress the circumstance that in the calculations above, the
solution of the meson fleld equation has been obtained by analytical
continuation, whereas the Dirac wave equation has been solved in
the ordinary way. The Dirac equation is also, however, a hyperbolic
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equation, the solution of which and, thereby, the corresponding energy
expressions, can also be given by analytical continuation. I hope
to be able to return to these questions later.
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Preparation of Synthetic Quartz

_A RECENT communication directs attention to the crystallization of
silica glass to give small quartz crystals®’. My experience in the hydro-
thermal synthesis of quartz may be of interest in view of this letter
and of the industrial importance of this mineral.

A partial or complete crystallization of silicic acid gel was obtained
by heating the gel in an autoclave with potassium carbonate or sodium
carbonate solution for three days at ~ 350° C. to 390° C. Quartz was
the only crystalline species present. The birefringent crystals were
small but often beautifully formed, and frequently revealing the stria-
tions and hemihedral faces seen in perfect natural crystals. Along
with other species such as analcite, quartz was also obtained by
hydrothermal crystallization of aluminosilicate gels., These were
prepared by stirring sodium aluminate solution into_silicic acid
suspension, and evaporating to dryness; the crystallization was
effected in media_of water, sodium carbonate solution and sodium
bicarbonate solution at temperatures ranging between ~ 255° C.
and ~ 355° C. After crystallization, the pH of the cold mother
liquor in all cases lay in the range 8:5-10-5, that is, the liquor was
alkaline. Gels of compositions NaAlO,.6-155i0,; NaAl0,.5-475i0, ;
NaAlO,.4-685i0,; NaAlO,.4-10Si0, usually gave inter alia yields
of quartz, though often small in amount compared with other species.
Mixtures poorer in silica than the above did not give any quartz under
these alkaline conditions. It was concluded that alkali is a good
selective mineralizer for quartz in silica-rich mixtures only, from which
under the above conditions quartz is easily formed.

It must not be thought that synthetic quartz formation is rarely
reported. Experiments have been made quite similar to those described
by Wooster and Wooster’, in which various glasses (crown, boro-
silicate and flint®*; thuringian and obsidian®; silica glass‘; glass
powder® and minerals (muscovite®; tridymite and cristobalite!) have
been crystallized or recrystallized. Crystallizations of various gels
and mixtures (for example, silica gel”’ and sol®?; alkali, AI(OH); and
Si(OH);; K,Si0s, KOH and AI(OH)s!1%1%; and a variety of others)
have been equally successful***6, There is thus abundant material
to draw on in attempts to make quartz on a large scale.

It is also of interest that the formation of tridymite??:!1:1%14 and
cristobalite’?’® has been reported under similar hydrothermal con-
ditions to those for making quartz, and so in a metastable temperature
range. It is thus likely that all the variables are not yet realized.
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Scattering of Polarized Light by a Colloidal Graphite Solution

THE first Lord Rayleigh dealt with the scattering of plane polarized
light seventy-five years ago'. In the theoretical treatment it is assumed
that the colloidal particles are spherical. A newly prepared solution
of colloidal sulphur is usually employed to demonstrate his results,
and the observations indicate that no light is scattered in the plane
containing the electric vector. (This is the direction marked on
‘Polaroid’ disks, and I will here adopt the convention of calling it
the plane of polarization.) .

Consider a beam of plane polarized light directed vertically down-
ward on a cylindrical glass absorption cell with its upper surface
covered with a plane window. The cell is filled with a weak suspension
of ‘Aquadag’ colloidal graphite in water. Observations are carried
out in a horizontal plane, and either the observer moves around the
tube in a circle. or the polarizing ‘Polaroid’ is rotated. The diffused
light appears almost equally bright when viewed from any direction
horizontally. If, however, a ‘Polaroid’ is placed before the eye, it
is found that the light is nearly completely plane polarized, the in-
clination of the plane of polarization being related to the angular
position of the observer as indicated in the diagram, where PP repres-
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