Table 1

Date		
Sept.	1	
""	14	
Oct.	20	
O	4	

Ethyl mercur
phosphate
0.14
0.98
2.34
2.97
Acenaphthene
0.11
0.28
1.42
1.67
Control
0.07
0.68
1.32
1.82

Fruits of the 'mercury' series were mostly malformed and much smalier than those of the controls. An attack of mildew caused most of the fruits to be shed: but all 29 of the fruits remaining on the 'mercury' series were parthenocarpic; of the acenaphthene series 18 were parthenocarpic out of 25 , while only 2 of 29 control fruits were parthenocarpic

To tomatoes (var. Lucullus) a 0.001 per cent solution of colchicine was administered through a cut in the stem ${ }^{5}$ and by repeatedly spray ing the flowers with the solution. in the treated than in the contro plants. Results are shown in Table 2.

Table 2.

Treatment Colchicine Control

Total number
of fruits
46
28
of fruits
of $1440 \cdot 0 \mathrm{gm}$
1440.0 gm
1105.0

Av. weight Number of
of one fruit ripe fruits
$31 \cdot 3 \mathrm{gm}$.
$39 \cdot 2 \mathrm{O}$
reached from the study of alizarin-stained specimens of a number of embryonic and post-embryonic stages of Hemiechinus (Insectivora) Rousettus and Tadarida (Chiroptera), Mus and Gerbillus (Rodentia are in agreement with Gaupp's view. In all these genera the part of Meckel's cartilage opposite the gonial does not ossify and takes no part in the composition of the anterior process of the aduit malleus which appears to be formed solely by the gonial. The process of ossification of the malleus starts in the gonial and proceeds into the lamina and head of the developing malleus; the manubrium ossifles later.

Although a gonial has been described in the embryo of Mus by Fuchs ${ }^{6}$ and of Lepus by Voit ${ }^{7}$ no reference has been made to it in rodents' mallei so far described by various authors.
Full details of this study will be published elsewhere
Faculty of Science,
KAMAL WASSIF.
Abbassia Science,
March 16.
${ }^{1}$ Doran, A. H. G., Trans. Lirtn. Soc., 1 (1878)
${ }^{2}$ Weber, M., "Die Säugetiere", 1 (1927).
${ }^{3}$ Gaupp, E., Anat. Anz., 39 (1911).
${ }^{4}$ Ridewood, W. G., Phil. Trans. Roy. Soc., B, 211 (1922).
${ }^{5}$ De Beer, G. R., "The Development of the Vertebrate Skull"' (Oxford, 1937).
${ }^{6}$ Fuchs, H., Arch. Anat. u. Physiol., Anat. Abt. (1909, Suppl.).
${ }^{7}$ Voit, M., Anat. Hefte, 38 (1909).

Bias in the Use of Small-size Piots in Sample Surveys for Yield

Sample surveys for yield of cotton, wheat and paddy conducted in recent years all over India (except Bengal) have been carried out on plots of large size varying from $1 / 160$ to $1 / 20$ of an acre ${ }^{1,2}$. In contrast the plot size used in Britain and the United States is small, of the order of $1 / 4,000$ of an acre ${ }^{3,4}$. In India the small-size plot (area $13.6 \mathrm{sq} . \mathrm{ft}$.) was first used by Hubback and in recent years by Mahalanobis ${ }^{5,6}$.
An investigation was carried out in the Moradabad district (area $2,288 \mathrm{sq}$. miles) for comparing different'size plots. The plan of sampling was similar to that used earlior ${ }^{1,2}$, except that in each selected fleld eight plots were marked at random: (a) two equilateral triangular plots of side 33 ft . subdivided into three strips by means of lines par-
 along the sides; (b) three circular plots of radius 2 ft . each; and (c) three circular plots of radius 3 ft . each. The triangular plots were marked with the help of chains and pegs and the circular ones with the help of a specially devised apparatus consisting of a peg, a steel tape and a plumb line. The investigation was carried out by the staff of the Department of Revenue posted in the district, who ordinarily are required to carry out these experiments under official orders.

Size of plot in sq. ft.	No. of plots	Average yield in maunds per acre	Percentage over-estimation
Irrigated	78	$10 \cdot 10$	
471.5	78	10.58	
117.9	78	11.69	4.8
29.5	117	11.60	$15 \cdot 7$
28.3	117	14.38	14.9
12.6	107	6.55	42.4
Unirrigated	107	7.27	
471.5	107	8.08	11.0
117.9	162	7.52	23.4
29.5		9.33	14.8
28.3			42.4
12.6			

The accompanying table shows the results. It will be seen that small olots (less than 30 sq . ft.) result in a serious over-estimation of yield. The bias diminishes with increase in the size of plot, but even plots of 118 sq . ft. are not free from bias. The differences in the yield estim ates are found to be statistically significant. Not only are the result consistent both for irrigated and unirrigated wheat, but also they how the same trend of bias in all the six tensils in which experiment were carried out. The field staff employed was different everywhere.
Yates has previously reported the existence of bias from the use of small-size plots ${ }^{7}$. The reason for over-estimation appears to be the human tendency to include border plants inside the plot. This factor becomes serious when the perimeter of the plot is large in proportion to its area. In another scheme in Madras, a comparison was made between the estimates from 1/20 acre plots and the whole field, and the two agreed within the margin of their sampling errors. Thes results indicate that in India, where crops are unevenly sown, and possibly also in Britain and the United States, small-size plots most probably lead to biased results.

Imperial Council of Agricultural Research,

$$
\begin{aligned}
& \text { New Delhi. } \\
& \text { Jan. } 29 .
\end{aligned}
$$

${ }^{1}$ Panse, V. G., and Kalamkar, R. J., Curr. Sci., 13, 120, 223.
${ }_{2}$ Sukhatme, P., V., Nature, 154, 299 (1944). Proc. Ind. Acad. Sci., B 21, 328.
${ }^{3}$ Cochran, W. G., J. Amer. Stat. Assoc., 34, 492
${ }^{4}$ King, A. J., MeCarty, D. E., and McPeak, M., U.S. Dept. Agric. Bull. 814.
${ }^{5}$ Hubback, J., Agric. Res. Ind. Pusa, Bull. 166.
${ }^{6}$ Mahalanobis, P. C., Sankhya, 7, 1
${ }^{7}$ Yates, F., Anv. Eug., 6, 2.

