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Genetic studies suggest that dopamine D

 

4

 

 receptor 
polymorphism is associated with attention deficit 
hyperactivity disorder (ADHD). We recently reported that 
motor hyperactivity in juvenile male rats with neonatal 
6-hydroxydopamine lesions of the central dopamine system can 
be reversed by dopamine D

 

4

 

 receptor-selective antagonists. In 
this study, effects of such lesions on D

 

4

 

 as well as other 
dopamine receptors (D

 

1

 

 and D

 

2

 

) were autoradiographically 
quantified at selected developmental stages. Neonatal lesions 
resulted in motor hyperactivity at postnatal day (PD) 25, but 
not at PD 37 or 60. Correspondingly, D

 

4

 

 receptor levels in 
lesioned rats were substantially increased in caudate-

putamen and decreased in nucleus accumbens at PD 25, but 
not at PD 37 or 60. Neonatal lesions also led to relatively 
minor changes in D

 

1

 

 and D

 

2

 

 receptor binding in various 
forebrain regions. However, the time-course of lesion-induced 
motor hyperactivity correlated only with changes in D

 

4

 

, but 
not D

 

1

 

 and D

 

2

 

 receptors. These results further support the 
hypothesis that D

 

4

 

 receptors may play a pivotal role in lesion-
induced hyperactivity, and possibly in clinical ADHD.
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Attention-deficit hyperactivity disorder (ADHD) is a
common neuropsychiatric condition characterized by

hyperactivity, inattention and impulsivity, typically in
school-aged boys (Barkley 1990). Abnormal dopamine
(DA) neurotransmission has long been considered to
underlie the disorder since most symptoms of ADHD
can be alleviated by psychostimulant drugs, notably
methylphenidate and amphetamines, that release DA
among other actions. Increased radioligand binding to
dopamine transporters (DAT) in patients with ADHD
identified in recent brain imaging studies further impli-
cates deficient DA functioning in the disorder (Dough-
erty et al. 1999; Dresel et al. 2000).

DA modulates physiological processes through acti-
vation of five G-protein coupled receptors classified
into D

 

1

 

-like (D

 

1

 

 and D

 

5

 

) and D

 

2

 

-like (D

 

2

 

, D

 

3

 

, and D

 

4

 

)
families (Neve and Neve 1997). Among these, the D

 

4

 

 re-
ceptors, uniquely, have been implicated in clinical
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ADHD by genetic linkage studies (La Hoste et al. 1996).
Human D

 

4

 

 receptors occur in multiple forms with 2–11
copies of a 16-amino acid sequence in the putative third
intracellular loop of the peptide (Van Tol et al. 1992;
Lichter et al. 1993; Asghari et al. 1994). One such allele
is the D

 

4.7

 

 receptor, containing seven repeats of this se-
quence. It has repeatedly been associated with ADHD,
as well as related behavioral traits such as novelty-seek-
ing and impulsivity (Benjamin et al. 1996; Ebstein et
al. 1996; La Hoste et al. 1996; Bailey et al. 1997; Rowe et al.
1998; Swanson et al. 1998; Faraone et al. 1999; Barr et al.
2000).

Some features of ADHD are simulated in several lab-
oratory models, including: (1) rats with neonatal lesions
of the central DA system induced by the neurotoxin
6-hydroxydopamine (6-OHDA; Shaywitz et al. 1976);
(2) the spontaneously hypertensive Kyoto-Wistar rat
(Tucker and Johnson 1981); (3) nonhuman primates
treated with the DA neurotoxin N-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP; Roeltgen and Schneider
1991); and (4) genetic knock-out mice lacking functional
DAT (Giros et al. 1996). Juvenile male rats with neona-
tal 6-OHDA lesions are a particularly appropriate
model for the hyperactivity of ADHD in that lesion-in-
duced motor hyperactivity is most prominent at an age
corresponding to human periadolescence (Shaywitz et
al. 1976; Erinoff et al. 1979), and is dose-dependently
antagonized by stimulants used to treat clinical ADHD
(Heffner and Seiden 1982). In addition, the model is
associated with learning deficits that are also antago-
nized by stimulants (Takasuna and Iwasaki 1996; Wool
et al. 1987).

We found recently that motor hyperactivity follow-
ing 6-OHDA lesioning of neonatal rats can be re-
versed dose-dependently by selective antagonists for
D

 

4

 

 but not D

 

2

 

 receptors, and exacerbated by a D

 

4

 

 ago-
nist (Zhang et al. 2001b). In addition, motor hyperac-
tivity correlated closely with the magnitude of in-
creased D

 

4

 

, but not D

 

2

 

 receptor binding in basal
forebrain. The present study further investigated the
role of D

 

4

 

 receptors in motor hyperactivity by study-
ing temporal relationships between lesion effects on
developmental expression of D

 

4

 

 receptors and lesion-
induced motor hyperactivity. In a pilot experiment,
we found that lesion-induced motor hyperactivity
reached peak levels at postnatal day (PD) 25, and dis-
appeared by PD 35. Consequently, PD 25, 37 and 60
were chosen to represent three critical developmental
stages: juvenile rats with motor hyperactivity (PD 25),
juvenile rats lacking hyperactivity (PD 37), and rats
in early adulthood (PD 60). We hypothesize that up-
regulation of D

 

4

 

 receptors in lesioned rats occurs se-
lectively during the periadolescent period when hy-
peractivity is present, but normalizes with further
maturation as motor activity of lesioned rats returns to
control level.

 

MATERIALS AND METHODS

Radioligands and Chemicals

 

[

 

3

 

H]Nemonapride (R[

 

�

 

]-7-chloro-8-hydroxy-3-methyl-
1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 85.5 Ci/
mmol) and [

 

3

 

H]SCH-23390 (R[

 

�

 

]-2,3,4,5-tetrahydro-
3-methyl-5-phenyl-1H-3-benzazepin-7-ol; 81.4 Ci/mmol)
were from New England Nuclear (NEN; Boston, MA).
[

 

3

 

H]

 

�

 

-CIT ([

 

�

 

]-2-

 

�

 

-carbomethoxy-3-

 

�

 

-[4-iodophenyl]-
tropane; 64.7 Ci/mmol) was from Tocris-Cookson (Bris-
tol, UK). Tritium-sensitive Hyperfilm, D-19 developer
and fixative were from Eastman-Kodak (Rochester,
NY). 1,3-Ditolylguanidine (DTG), 

 

cis

 

-flupenthixol dihy-
drochloride, desipramine hydrochloride, 6-OHDA hy-
drobromide, ketanserin tartrate, S(

 

�

 

)-pindolol, S(

 

�

 

)-
raclopride tartrate, and S(

 

�

 

)-sulpiride were from
Sigma-RBI (Natick, MA). Other chemicals were from
Fisher Scientific (Dallas, TX) or Sigma Chemicals (St.
Louis, MO).

 

Neonatal Lesioning

 

Uses of animals were approved by the Institutional An-
imal Care and Use Committee (IACUC) of McLean
Hospital, in compliance with applicable federal and lo-
cal guidelines for ethical use of experimental animals.
Sprague-Dawley rats (Charles River Labs; Wilmington,
MA) were maintained under a 12/12-h artificial day-
light/dark schedule (on at 7 

 

A

 

.

 

M

 

.), with free access to
tap-water and standard rat chow. On PD 1, male pups
were randomly assigned to lactating dams (10/dam).
On PD 5, pups received a subcutaneous (s.c.) injection
of desipramine hydrochloride (25 mg/kg), followed
by randomized intracisternal (i.c.) injections of either
6-OHDA hydrobromide (equivalent to 100 

 

�

 

g free base)
or vehicle (320 mM NaCl containing 0.1% ascorbic acid)
under hypothermal anesthesia 60 min later (Shaywitz et
al. 1976; Zhang et al. 2001b). Pups were returned to
nursing dams after regaining consciousness. The extent
of lesioning was verified by quantifying DAT binding
autoradiographically with [

 

3

 

H]

 

�

 

-CIT as a specific indi-
cator of DA nerve terminals at the completion of behav-
ioral experiments (Kula et al. 1999; Zhang et al. 2001b).

 

Behavioral Experiments

 

Motor activity was quantified with an infrared photo-
beam activity monitoring system (San Diego Instru-
ments; San Diego, CA) controlled by a microcomputer,
as detailed previously (Zhang et al. 2001b). Individual
rats were tested in a novel environment in the absence
of food and water (17 

 

�

 

 8 

 

�

 

 8 inch transparent plastic
cages in a 4 

 

�

 

 8 horizontal grid of infrared beams), be-
tween 10:00 and 16:00 h on PD 24, 36, or 59. Scores were
collected at 5-min intervals for 2.5 h. Locomotor activity
was defined as breaking of consecutive photobeams.
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DA Transporter and Receptor Autoradiography

 

Rats were sacrificed by rapid decapitation one day after
behavioral testing. Brains were quickly removed and
frozen in prechilled isopentane. Coronal sections (10

 

�

 

m) were prepared in a cryostat at 

 

�

 

17

 

�

 

C, thaw-
mounted on gelatin-coated microscopic slides, and
stored at 

 

�

 

80

 

�

 

C until used in quantitative autoradio-
graphic assays. For each assay, data from three contigu-
ous brain sections were pooled to yield an average re-
sult for each of 9–11 subjects/experimental group.

For DAT binding assays, tissue sections were prein-
cubated for 60 min at room temp. in 50 mM Tris-citrate
buffer (pH 7.4) containing (mM): NaCl (120), and MgCl

 

2

 

(4). Sections were then incubated for another 60 min in
fresh buffer containing 2 nM [

 

3

 

H]

 

�

 

-CIT. Specific bind-
ing was defined with excess GBR-12909 (1 

 

�

 

M). Sec-
tions were then washed twice (5 min in ice-cold buffer),
rinsed in deionized water, and air-dried.

All DA receptor binding assays were carried out at
room temp. in 50 mM Tris-HCl buffer (pH 7.4) contain-
ing (mM): NaCl (120), KCl (5), CaCl

 

2

 

 (2), and MgCl

 

2

 

 (1).
After preincubation for 60 min, brain sections were
transferred to fresh buffer containing radioligand of
specified concentration, and incubated for 60 min. Sec-
tions were then washed twice (5 min in ice-cold buffer),
rinsed in deionized water, and air-dried.

 

D

 

1

 

-like receptor binding

 

 was determined with 1 nM
[

 

3

 

H]SCH-23390 (Tarazi et al. 1998a; Zhang et al. 2001b).
5-HT

 

2A/2C

 

 binding sites were masked with 100 nM ket-
anserin. Nonspecific binding was determined with 1 

 

�

 

M

 

cis

 

-flupenthixol. Although [

 

3

 

H]SCH-23390 binds to both
D

 

1

 

 and D

 

5

 

 receptors under these assay conditions, expres-
sion of D

 

5

 

 receptors in rat forebrain is very limited (Mea-
dor-Woodruff et al. 1992), and the majority of the binding
in brain regions examined represents D

 

1

 

 receptors.

 

D

 

2

 

-like receptor binding

 

 was assayed with 1 nM
[

 

3

 

H]nemonapride, with 0.5 

 

�

 

M DTG and 0.1 

 

�

 

M
pindolol included to block 

 

�

 

 and 5-HT

 

1A

 

 binding sites,
respectively (Tarazi et al. 1998a; Zhang et al. 2001b).
Nonspecific binding was determined with 10 

 

�

 

M S(

 

�

 

)-
sulpiride. Although the signal includes binding to D

 

2

 

,
D

 

3

 

, and D

 

4

 

 sites, most of the binding represents D

 

2

 

 sites.

 

D

 

4

 

 receptor binding

 

 was assayed using 1 nM [

 

3

 

H]nem-
onapride, with 300 nM of the D

 

2

 

/D

 

3

 

-selective antagonist
raclopride to fully occlude D

 

2

 

 and D

 

3

 

 sites, as well as 0.5

 

�

 

M DTG and 0.1 

 

�

 

M pindolol to block 

 

�

 

 and 5-HT

 

1A

 

 bind-
ing sites (Tarazi et al. 1998a; Zhang et al. 2001b). Nonspe-
cific binding was determined with 10 

 

�

 

M S(

 

�

 

)-sulpiride.
Dried sections were exposed to tritium-sensitive

Kodak Hyperfilm for 2–6 weeks before standard photo-
graphic processing (Tarazi et al. 1998a; Zhang et al.
2001b). Radioligand binding was quantified with a
computerized image analyzer (Image Research Inc.; St.
Catherines, Ontario), and converted to nCi/mg tissue
using [

 

3

 

H]reference standards, with specific binding ex-

pressed as mean 

 

	 S.E.M. in fmol/mg tissue. Radio-
ligand density was quantified in caudate-putamen
(CPu), nucleus accumbens septi (NAc), and medial pre-
frontal cortex (mPFC) as outlined in Figure 1.

Data Analysis

Lesion effects on DA transporter and receptor density
were analyzed by two-way analysis of variance
(ANOVA) for overall effects of treatment in various
brain regions, followed by post-hoc Dunnett’s t-tests for
planned comparisons. Two-tailed probability (p) of 

.05 indicated statistically significant differences. Behav-
ioral data were analyzed using Mann-Whitney non-
parametric analysis.

RESULTS

Motor Activity

Neonatal 6-OHDA lesions resulted in robust spontane-
ous hyperactivity at PD 24 (Figure 2). Activity of le-
sioned rats was not different from that of sham controls
for the first 10 min of testing, but declined much more

Figure 1. Schematic representation of brain regions included
in autoradiographic analyses. A. 2.7–3.2 mm anterior to
bregma; B. 1.2–1.6 mm anterior to bregma.
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slowly than in controls thereafter. At PD 36 and 59, nei-
ther total locomotor activity nor its distribution within
2.5 h of testing differed significantly between lesioned
rats and sham controls.

DA Transporters

Neonatal 6-OHDA lesions resulted in large reductions
in DAT binding in CPu and NAc (Figure 3). At PD 25,
average losses of DAT binding were 80.1% in CPu and
65.7% in NAc. With further maturation, loss of DAT
binding in CPu (71.2% and 70.4% at PD 37 and 60, re-
spectively) was not statistically different from that of
PD 25, whereas DAT binding in NAc recovered substan-
tially (37.5% and 28.6% loss at PD 37 and 60; F2,18 df � 15.1,
p 
 .01).

D1 Receptors

In sham-control rats, there were moderate and statisti-
cally significant maturational losses of D1 receptor bind-

ing between PD 25 and 60 across all brain regions evalu-
ated (F2,18 df � 4.28, p 
 .05; Table 1). Neonatal 6-OHDA
lesions resulted in a small decrease in D1 receptor bind-
ing in CPu at PD 60 (by 8.8%; p 
 .05), but not at PD 25
or 37. D1 receptor binding in NAc was unaffected by the
lesions at any age. In mPFC, the lesions led to a signifi-
cant increase of D1 receptor binding at PD 37 (26.2%;
p 
 .05), but not at PD 25 and 60.

D2 Receptors

Across three brain regions examined, there were signifi-
cant maturational losses of D2 receptor binding in both
controls (F2,18 df � 30.3, p 
 .001) and lesioned rats (F2,18 df �
20.4, p 
 .01; Table 1). Neonatal 6-OHDA lesions in-
creased D2 receptor binding in CPu by 20.6%, 13.2%,
and 14.9% at PD 25, 37 and 60, respectively, whereas D2

receptor binding in NAc and mPFC was not affected.

D4 Receptors

D4 receptor binding decreased significantly with matu-
ration in all brain regions in control rats (F2,18 df � 52.2;
p 
 .001; Figure 4). At PD 25, neonatal 6-OHDA lesions
resulted in significantly increased D4 receptor binding
in CPu (by 33.3%; p 
 .01), and decreased D4 binding in
NAc (by 43.6%; p 
 .05). Differences between lesioned
and control rats were not statistically significant at later
ages, when motor activity of lesioned rats returned to
control levels. D4 receptor binding in mPFC was not af-
fected at any age.

DISCUSSION

In agreement with previous reports (Shaywitz et al.
1976; Heffner and Seiden 1982; Zhang et al. 2001b), neo-
natal 6-OHDA lesioning of developing DA projections
in rat forebrain resulted in robust motor hyperactivity.
This behavioral response appears to represent deficient

Figure 2. Effects of neonatal
6-OHDA lesioning on sponta-
neous locomotor activity in a
novel environment at PD 24, 36,
or 59. Activity (mean 	 S.E.M.)
were accumulated every 5 min
over 2.5 h at 10:00–16:00 h in
the absence of food and water
(n � 9–11 rats/group).

Figure 3. Effects of neonatal 6-OHDA lesions on DAT con-
centrations assayed with [3H]�-CIT at PD 25, 37, or 60. Data
are means 	 S.E.M. (fmol/mg tissue) for n � 9–11 rats/group;
** p 
 .01 vs. corresponding sham-lesioned controls.
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habituation to a novel environment, since motor activ-
ity in the initial testing period did not differ appreciably
between lesioned rats and sham controls (Figure 2, PD
24). Also in accord with previous studies (Shaywitz et
al. 1976; Erinoff et al. 1979), lesion-induced motor hy-
peractivity was evident only during early development
(PD 24 in this study), and no longer present at PD 36 or
59 (Figure 2).

Neonatal 6-OHDA lesions resulted in a substantial
and sustained decrease in DAT binding in CPu. In con-
trast, loss of DAT binding in NAc (66%) at PD 25 was
less than that in CPu (80%; p 
 .05), and recovered sub-
stantially at later ages (29% loss at PD 60). Recovery of
DAT binding in NAc was temporally paralleled by nor-
malization of motor behavior with maturation. The me-
solimbic DA pathway to NAc plays an important role
in exploratory behavior (Le Moal and Simon 1991), in-
cluding in 6-OHDA lesion-induced hyperactivity (Hef-
fner et al. 1983). Therefore, it is possible that post-
lesioning plasticity involving DA neurotransmission in
NAc may contribute to normalization of motor activity
in early adulthood.

Developmental studies on DA innervation to NAc
after site-specific injection of 6-OHDA into CPu have
yielded contradictory results. Whereas gradual recov-
ery of tyrosine hydroxylase (TH) immunoreactivity has
been reported (Frohna et al. 1997), slowly progressive
loss of DA content was noted after more complete le-
sions (Teicher et al. 1998). Recovery of DAT levels in
NAc at PD 37 and 60 in the present study (Figure 3)
may indicate repair or regrowth of DA projections from
ventral tegmental area to NAc. Parallel developmental
studies of DA tissue content, extracellular DA concen-
tration, and density of DA terminals after 6-OHDA
lesioning of neonates might further clarify adaptive
changes in DA innervation to the NAc after varying de-
gree of lesioning.

D1 receptors in neostriatum have been reported, in-
consistently, to be unaffected by moderate or severe
neonatal 6-OHDA lesions (Dewar et al. 1990; Caboche
et al. 1991; Radja et al. 1993; Frohna et al. 1995; Zhang et
al. 2001b), or decreased by nearly complete lesions (Gel-
bard et al. 1989). This inconsistency may reflect differ-
ences in the extent or timing of lesioning or sampling.

Table 1. Effects of Neonatal 6-OHDA Lesions on Radioligand Binding to D1 and D2 Receptors in Rat Forebrain

PD 25 PD 37 PD 60

Sham 6-OHDA Sham 6-OHDA Sham 6-OHDA

D1 Receptor Density 
CPu 255.6 	 20.5 265.6 	 13.1 237.3 	 10.0 230.3 	 8.2 230.8 	 4.3 210.5 	 4.3*
NAc 233.1 	 21.4 214.2 	 14.3 191.1 	 17.9 179.9 	 6.2 208.8 	 5.5 94.0 	 9.2
mPFC 48.9 	 3.4 51.5 	 3.1 37.3 	 2.4 47.1 	 2.0* 43.8 	 1.1 42.8 	 2.2

D2 Receptor Density
CPu 222.5 	 7.2 268.4 � 4.9** 166.1 	 9.5 188.1 	 7.2* 155.7 	 4.0 178.9 	 7.1*
NAc 108.8 	 8.9 96.1 	 6.6 85.7 	 10.8 75.8 	 6.4 81.8 	 4.8 75.0 	 3.5
mPFC 15.3 	 3.4 13.4 	 2.6 9.4 	 2.7 8.6 	 1.5 7.8 	 1.5 7.7 	 0.7

Data are specific binding, as mean fmol/mg tissue 	 S.E.M. Brain regions are caudate-putamen (CPu), nucleus accumbens septi (NAc), and medial
prefrontal cerebral cortex (mPFC).

*By ANOVA: p 
 .05, significantly different (boldface) from sham-lesioned control littermates (N � 9–11).
**By ANOVA: p 
 .01, significantly different (boldface) from sham-lesioned control littermates (N � 9–11). 

Figure 4. Effects of neonatal
6-OHDA lesioning on D4 recep-
tor levels (fmol/mg tissue) as-
sayed at PD 25, 37, or 60 with
[3H]nemonapride in the pres-
ence of raclopride to occlude D2

and D3 sites. Data are means 	
S.E.M. for 9–11 rats/group; * p 

.05, ** p 
 .01 vs. corresponding
sham-lesioned controls.
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In the present study, we found a small, but statistically
significant late decrease in D1 receptor binding in CPu
at PD 60, but not PD 25 or 37 (Table 1). The timing of
this change does not readily account for motor hyperac-
tivity that was present only at PD 25. We also found a
significant increase in D1 receptor binding in mPFC at
PD 37 (Table 1). In view of the proposed role of frontal
cortex in self-injurious behavior that follows the lesion-
ing, this relatively late increase in D1 expression may
contribute to self-injurious behavior induced by D1 ago-
nists that is particularly prominent in rats at such later
ages following neonatal 6-OHDA lesions (Breese et al.
1984, 1985; Cromwell et al. 1999).

D2 receptors in neostriatum have been found to be un-
changed or slightly increased by neonatal 6-OHDA le-
sions (Breese et al. 1987; Dewar et al. 1990; Radja et al.
1993; Frohna et al. 1995; Zhang et al. 2001b). We found that
such lesions resulted in small increases of D2 receptor
binding in CPu at all developmental stages evaluated, re-
gardless of whether motor hyperactivity was present or
not (Table 1). A lack of temporal correlation between D2

receptor changes and motor hyperactivity, together with
previous pharmacological evidence that D2-selective an-
tagonists do not affect lesion-induced hyperactivity (Hef-
fner and Seiden 1982; Zhang et al. 2001b), suggest that D2

receptors are not critically involved in the hyperactivity.
Consistent with our earlier observation of maturational

pruning of D4 receptors at puberty (Tarazi et al. 1998b), D4

receptor binding in CPu, NAc, and mPFC of sham-control
rats was highest at PD 25, and decreased significantly with
further maturation (Figure 4). After lesioning at PD 25, D4

receptor binding was significantly increased in the CPu,
whereas in the NAc, D4 receptor binding was substantially
decreased. The extent of these changes (33% increase in
CPu and 44% decrease in NAc) was much greater than the
observed upregulation of D2 receptors. More importantly,
changes in D4 receptors were detected only when lesioned
rats exhibited hyperactivity (PD 25), and not with further
maturation (PD 37 and 60) when motor activity of lesioned
rats had returned to control levels. In contrast to the tem-
porary effects of neonatal 6-OHDA lesions on D4 receptors,
effects of such lesions in adult rats follow a different pat-
tern. Selective destruction of nigrostriatal DA projections in
adult rats increased D4 receptor binding in CPu at five
weeks but not one week after lesioning (Tarazi et al. 1998a;
Zhang et al. 2001a), suggesting mechanisms for D4 receptor
regulation differ at specific developmental stages.

Previously, we found no differences in D4 receptor
binding in NAc between sham-control and lesioned
rats using procedures identical to those employed in
the present study (Zhang et al. 2001b). These seemingly
inconsistent results may reflect antemortem exposure
to D4-selective drugs in the previous study. Additional
experiments are needed to verify the potential effects of
such drug exposure.

To recapitulate, DA receptor subtypes were found to be

differentially regulated in response to neonatal 6-OHDA
lesions of rat forebrain DA systems. Close examination of
these changes in the context of motor hyperactivity re-
vealed that, in addition to plasticity of presynaptic DA ter-
minals in NAc, changes of D4 receptors in CPu or NAc are
also likely to be involved in motor hyperactivity in le-
sioned rats. In view of our previous finding that lesion-
induced motor hyperactivity was reversed by D4-selective
antagonists, the present results further suggest a pivotal
role of D4 receptors.

Mechanisms by which D4 receptor plasticity may
contribute to motor hyperactivity remain obscure, par-
ticularly due to limited information about the physio-
logical role of these receptors (Tarazi and Baldessarini
1999; Oak et al. 2000). PFC is likely to be a crucial site
due to its relative abundance of D4 receptors (Mrzljak et
al. 1996; Ariano et al. 1997; Tarazi et al. 1998a; De la
Garza II and Madras 2000). Moreover, this brain region
is proposed to be critically involved in the pathophysi-
ology of ADHD, based on clinical neuropsychological
and functional brain imaging studies (Barkley et al.
1992; Ernst and Zametkin 1995; Barkley 1997). In the
present study, we did not find significant changes in D4

receptor binding in mPFC (Figure 4). However, altered
coupling of D4 receptors to G-proteins, or other down-
stream molecular events require further consideration.

D4 receptors are proposed to be present on glutamater-
gic terminals of corticostriatal projections from mPFC to
CPu, based on studies of cortical ablation (Tarazi et al.
1998a). Glutamatergic efferents from mPFC are impor-
tant in limiting behavioral responses to various stimuli
(Bubser and Schmidt 1990; Flores et al. 1996; Wilkinson
et al. 1997; Lacroix et al. 1998). Upregulation of D4 recep-
tors in CPu at PD 25 after lesioning (Figure 4), therefore,
may contribute to behavioral hyperactivity, indirectly,
by enhancing behaviorally inhibitory descending influ-
ences of cortex on lower limbic-motor centers.

The seemingly opposite effects of neonatal 6-OHDA
lesions on D4 receptors in NAc vs. CPu is particularly
intriguing. D4 receptors may reside on glutamatergic
terminals in CPu (Tarazi et al. 1998a), but a subset of D4

receptors in NAc has been localized to DA terminals
(Svingos et al. 2000). Decreased D4 receptor binding in
NAc in 6-OHDA lesioned rats may represent loss of
these presynaptic sites, perhaps leading to an increase
in DA release from its remaining terminals. However,
the precise manner in which adaptive changes in both
CPu and NAc contribute to the age-limited expression
of behavioral hyperactivity remains to be further clari-
fied. Nonetheless, the striking developmental parallels
between the behavioral hyperactivity and changes of D4

expression in CPu and NAc after neonatal lesions sug-
gest their involvement in hyperactivity and behavioral
responses of these rats to D4-selective agents.

In conclusion, we found that DA receptor subtypes in
rat forebrain were differentially affected by removing
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DA projections to basal forebrain during early postnatal
development. Of the three DA receptors examined,
changes in D4 receptors (time-limited increases in CPu,
losses in NAc) were much larger than those of D1 or D2

receptors. Moreover, behavioral hyperactivity most
closely paralleled the temporal pattern of D4 receptor ex-
pression in basal forebrain after the lesions, as D4 recep-
tor changes in both CPu and NAc were maximal at PD
25. These relationships add support to the hypothesis that
D4 receptors are involved in motor hyperactivity that fol-
lows neonatal lesions of DA neurons with 6-OHDA in
rats, and potentially also in clinical ADHD.
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