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The effects of three selective D

 

4

 

 antagonists [CP-293,019,
L-745,870, and Ro 61-6270] and two putative selective D

 

4

 

 
agonists [CP-226,269 and PD 168077] were compared with 
those of the generic D

 

2

 

-like [D

 

2L/S

 

,D

 

3

 

, D

 

4

 

] antagonist 
haloperidol to identify any characteristic “ethogram,” in 
terms of individual topographies of behavior within the 
natural rodent repertoire, as evaluated using ethologically 
based approaches. Among the D

 

4

 

 antagonists, neither
L-745,870 (0.0016–1.0 mg/kg) nor Ro 61-6270 (0.2–25.0 
mg/kg) influenced any behavior; whereas, CP-293,019 
(0.2–25.0 mg/kg) induced episodes of nonstereotyped 
sniffing, sifting, and vacuous chewing; there were no 
consistent effects on responsivity to the D

 

2

 

-like agonist RU 
24213. Among the putative D

 

4

 

 agonists, CP-226,269 (0.2–

25.0 mg/kg) failed to influence any behavior; whereas, PD 
168077 (0.2–25.0 mg/kg) induced nonstereotyped shuffling 
locomotion with uncoordinated movements, jerking, and 
yawning, which were insensitive to antagonism by
CP-293,019, L-745,870, or haloperidol. These findings fail 
to indicate any “ethogram” for selective manipulation of D

 

4

 

 
receptor function at the level of the interaction between 
motoric and psychological processes in sculpting behavioral 
topography over habituation of exploration through to 
quiescence and focus attention on social, cognitive, or other 
levels of examination.
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Although identification of D

 

1

 

 and D

 

2

 

 dopamine (DA)
receptor subtypes evolved from classical functional/
pharmacological considerations, which included other-
wise anomalous DAergic behavioral effects, members
of the broader D

 

1

 

-like [D

 

1A

 

 /D

 

1

 

, D

 

1B

 

/D

 

5

 

 ] and D

 

2

 

-like
[D

 

2L/S

 

 , D

 

3

 

, D

 

4

 

] families of receptors have been identified
through molecular biology and characterized primarily
in terms of their neuroanatomical localization and cel-

lular neurobiology (Missale et al. 1998; Neve and Neve
1997; Waddington et al. 1995, 1998). In particular, any
behavioral role for the D

 

4

 

 receptor (Van Tol et al. 1991)
remains poorly understood, primarily because of a pau-
city of agonists and antagonists showing meaningful se-
lectivity for this site (Tarazi and Baldessarini 1999). It is on
this background that interest in the D

 

4

 

 receptor as a target
for antipsychotic therapy evolved indirectly from: (1) its
extrastriatal, primarily corticolimbic localization; (2) the
discovery that clozapine, an efficacious antipsychotic
drug with a very low propensity to induce extrapyrami-
dal side effects, evidenced some modest preference for D

 

4

 

over D

 

2

 

 receptors; and (3) controversial evidence that D

 

4

 

receptor density was elevated in schizophrenia (Seeman
et al. 1997; Tarazi and Baldessarini 1999); strikingly, this
interest evolved in the absence of any substantive body of
preclinical evidence for D

 

4

 

 receptor involvement in be-
havioral models of antipsychotic activity.
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Subsequently, a series of selective D

 

4

 

 antagonists has
been identified. Among these, CP-293,019 (Mansbach et
al. 1998; Sanner et al. 1998;), L-745,870 (Bristow et al.
1997; Patel et al. 1997), NGD 94-1 (Tallman 1998), PNU-
101387 (Merchant et al. 1996), Ro 61-6270 (Hartman et
al. 1996), and S 18126 (Millan et al. 1998) have received,
to date, the more extensive preclinical evaluation, and
there is some consensus that they show little or no ac-
tivity in traditional models of either antipsychotic activ-
ity (e.g., DA agonist-induced responsivity and inhibi-
tion of conditioned avoidance responding) or of
extrapyramidal side effect liability (e.g., induction of
catalepsy); there are only limited and, thus far, contra-
dictory data as to whether they seem to be inactive
(Bristow et al. 1997), partially active (Tallman 1998), or
active (Mansbach et al. 1998) in such newer models as res-
toration of DA agonist-induced disruption of prepulse
inhibition.

Although little or no effect of selective D

 

4

 

 antago-
nists on spontaneous behavior has been noted, this has
almost invariably involved assessment in terms of pho-
tobeam interruptions, which fail to resolve other than
the most elementary components of otherwise compos-
ited behavior. Regarding selective D

 

3

 

 antagonists, we
have demonstrated recently (Clifford and Waddington
1998) that evaluation of behavioral topography in ro-
dents using an ethologically based approach (Colgan
1978) can identify drug profiles (”ethograms”) that can
clearly distinguish between agents seemingly of the
same pharmacological class. Furthermore, we recently
described (Clifford et al. 1998) how this approach (Ger-
lai and Clayton 1999) can reveal interactions at the
level of individual behaviors between receptor manip-
ulation and such psychological processes as habitua-
tion, which sculpts behavioral topography, in a man-
ner that cannot be accessed in detail by photobeam
approaches.

Given that studies to date on any behavioral role for
D

 

4

 

 receptors have emerged primarily in the context of
antipsychotic potential, even so fundamental a question
as the extent to which they might play any role in regu-
lating behavior has received little attention. Therefore,
we examined three selective D

 

4

 

 antagonists (CP-
293,019, L-745,870, and Ro 61-6270; Table 1), as com-
pared to the reference D

 

2

 

-like [D

 

2L/S

 

, D

 

3

 

, D

 

4

 

] antagonist
haloperidol, to identify any associated “ethogram” and
have studied in the same manner any effects on behav-
ioral responsivity to the reference D

 

2

 

-like [D

 

2L/S

 

, D

 

3

 

, D

 

4

 

]
agonist RU 24213 (Euvrard et al. 1980; Waddington et
al. 1995; Waddington and O’Boyle 1989;). Very recently,
two putative selective D

 

4

 

 agonists, CP-226,269 and PD
168077 (Glase et al. 1997; Zorn et al. 1997; Table 1) have
been described, but their psychopharmacological pro-
files remain essentially unexplored; we have studied
these agents similarly, to probe for any “ethogram”
complementary to that for selective D

 

4

 

 antagonists.

 

METHODS

Behavioral Studies

 

Young adult male Sprague–Dawley rats (180–350 g;
Beaumont Hospital, Dublin) were housed in groups of
five per cage with food and water available ad libitum,
and were maintained at 21 

 

6

 

 1

 

8

 

C on a 12/12 h (0900 on;
2100 off) light/dark regimin. On experimental days,
they were placed individually in clear glass observation
cages (36 

 

3

 

 20 

 

3

 

 20 cm) and either received drug or ve-
hicle immediately (nonhabituated condition; explor-
ing–habituating to a novel environment;) or were left
undisturbed for a habituation period of 3 h (habituated
condition) before assessment.

Behavioral assessments were carried out in a manner
similar to that described previously (Clifford et al. 1998;
Clifford and Waddington 1998; Deveney and Wadding-
ton 1996, 1997). Following injection of drug or vehicle,
animals were assessed using a rapid time-sampling be-
havioral checklist technique. For this procedure, each
rat was observed individually for 5-s periods at 1-min
intervals over 15 consecutive minutes, using an ex-
tended, ethologically based behavioral checklist. This
made possible the determination of the presence or ab-
sence of the following individual behaviors (occurring
alone or in any combination) in each 5-s period: stillness
(motionless, with no behavior evident); sniffing (flaring
of nostrils with movements of vibrissae); locomotion
(coordinated movement of all four legs resulting in
change of location); rearing (of any form); rearing free
(front paws raised off floor with motion upward or out-
ward away from any surface); rearing to wall (front
paws raised off floor with motion upward or outward
toward cage wall); rearing seated (front paws raised off
floor from a seated position); sifting (characteristic pat-
tern of coordinated movements of the forepaws
through bedding material on cage floor); grooming (of
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 Agonists and Antagonists and Their Selectivities 
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] Family of Receptors

 

Affinity [Ki, nM]
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CP-293,019
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1000
L-745,870
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Ro 61-6270
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5000

 

.

 

5000 5.0
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1000
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CP-226,269

 

d
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600 NA 6.0

 

.

 

100
PD 168077
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3740 2810 9.0
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NA, not available.
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Sanner et al. (1998).
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Patel et al. (1997).
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Hartman et al. (1996).
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Zorn et al. (1997).
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Glase et al. (1997).
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any form); intense grooming (characteristic pattern of
grooming of the snout and then face with the forepaws,
followed by vigorous grooming of the hind flank or an-
ogenital region with the snout); vacuous chewing (not
directed onto any physical material); chewing (directed
onto any physical material without consumption); eat-
ing (chewing with consumption); and licking. After this
15-min assessment using the behavioral checklist, ani-
mals were evaluated using a conventional 0- to 6-point
stereotypy scale: 0 

 

5

 

 asleep or inactive; 1 

 

5

 

 episodes of
normal activities; 2 

 

5

 

 discontinuous activity with
bursts of prominent sniffing or rearing; 3 

 

5

 

 continuous
stereotyped activity such as sniffing or rearing along a
fixed path; 4 

 

5

 

 stereotyped sniffing or rearing fixated in
one location; 5 

 

5

 

 stereotyped behavior with bursts of
licking or gnawing; 6 

 

5

 

 continuous licking or gnawing.
This cycle of assessment by behavioral checklist fol-
lowed by stereotypy scale was repeated on two further
occasions over a total observation period of 1 h; some
studies were continued into additional periods thereaf-
ter. For studies in the nonhabituated condition, rats
were used on a single occasion only; otherwise, they
were used on two occasions only with exposure only to
a single drug, separated by a drug-free interval of at
least 1 week, with random allocation to one of the vari-
ous dosages in each instance. All assessments were
made by a single observer unaware of the treatment
given to each animal. These studies were approved by
the Research Committee of the Royal College of Sur-
geons in Ireland and were conducted under license
from the Department of Health in accordance with Irish
legislation and EU regulations for the care and use of
experimental animals.

 

Drugs

 

The following selective D

 

4

 

 antagonists were used: CP-
293,019 [(7R,9aS)-7-(4-fluorophenoxy)methyl-2-(5-fluo-
ropyrimidin-2-yl)-2,3,4 ,6, 7,8, 9, 9a-octahydro-1H-pyri-
dol](1,2-a)pyrazine; Pfizer, USA]; L-745,870 [3-[4-(4-
chlorophenyl)piperazin-1-yl]methyl-1H-pyrrolo[2,3-
b]pyridine; Merck Sharpe & Dohme, UK]; Ro 61-6270
[2-amino-benzoic acid-1-benzyl-piperidin-4-yl-ester;
Roche, Switzerland]. The following putative selective
D

 

4

 

 agonists were used: CP-226, 269 [5-fluoro-2-(4-pyri-
din-2-yl-piperazin-1-methyl)-1H-indole; Pfizer, USA];
PD 168077 {N-[methyl-4-(2-cyanophenyl)piperazinyl-3-
methylbenzamide] Parke-Davis, USA].

CP-293,019 was dissolved in 40% cyclodextrin (RBI,
USA) and injected in a volume of 6 ml/kg; L-745,870
was dissolved in a minimum of 0.1N hydrochloric acid,
made up to volume with distilled water and injected in
a volume of 2 ml/kg; Ro 61-6270 was dissolved in dis-
tilled water and injected in a volume of 2 ml/kg; CP-
226,269 was dissolved in 40% dimethylsulphoxide and
injected in a volume of 2 ml/kg; PD 168077 was dis-

 

solved using ultrasonication in a minimum of glacial
acetic acid made up to volume with 40% cyclodextrin
and injected in a volume of 4 ml/kg. RU 24213 (Hoe-
chst-Marion-Roussel, France) was dissolved in distilled
water and injected in a volume of 2 ml/kg; haloperidol
(RBI, USA) was dissolved in a minimum of glacial ace-
tic acid, made up to volume with distilled water and in-
jected in a volume of 2 ml/kg. All drugs or their vehi-
cles were injected subcutaneously into the flank, with
antagonists or their vehicles given 30 min before ago-
nists in combination experiments.

 

Data Analysis

 

From application of the behavioral checklist, the total
“counts” for each individual behavior were determined
as the number of 5-s observation windows in which a
given behavior was evident, summed over a 1-h period,
and expressed as means 

 

6

 

 SEM; stereotypy scores were
averaged over the 1-h period and expressed similarly.
These data were then analyzed using analysis of vari-
ance (ANOVA) or the Kruskal–Wallis nonparametric
ANOVA, followed by Student’s 

 

t

 

-test or Mann–Whit-
ney U-test.

 

RESULTS

D

 

4

 

 Antagonist Effects on Behavior Over 
Nonhabituated (Exploratory) Condition

 

Haloperidol (0.004–0.5 mg/kg) dose dependently re-
duced sniffing (

 

p

 

 

 

,

 

 .01), locomotion (

 

p

 

 

 

,

 

 .05), rearing (

 

p

 

 

 

,

 

.001), grooming (

 

p

 

 

 

,

 

 .01), and chewing (

 

p

 

 

 

,

 

 .01), with
no significant effect on any other topography of behav-
ior over a 1-h period; no additional effects were evident
when observations were continued over a second, con-
secutive 1-h period. Neither CP-293,019 (0.2–25.0 mg/
kg), L-745,870 (0.008–1.0 mg/kg) nor Ro 61-6270 (0.2–
25.0 mg/kg) significantly influenced any topography of
behavior over a 1-h period; no significant effects were
evident when observations were continued over a sec-
ond, consecutive 1-h period.

 

D

 

4

 

 Antagonist Effects on Behavior Over
Habituated Condition

 

Haloperidol (0.0008–0.1 mg/kg) dose dependently re-
duced intense grooming (p , .01) but failed to influence
significantly any other topography of behavior over a
1-hr period; no additional effects were evident when
observations were continued over a second, consecutive
1-h period. CP-293,019 (0.2–25.0 mg/kg) dose-depen-
dently induced sniffing (p , .001) and vacuous chewing
(p , .01), with some induction of sifting (p , .05),
whereas grooming (p , .001) and episodes of stillness
(p , .001) were reduced over the 1-h period; increases
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in stereotypy score were confined to the range of 0–1,
indicating that behavioral stimulation was occurring
episodically in a nonstereotyped manner; no additional
effects were evident when observations were continued
over a second, consecutive 1-h period. Neither
L-745,870 (0.0016–1.0 mg/kg) nor Ro 61-6270 (0.2–25.0
mg/kg) influenced significantly any topography of be-
havior over the 1-h period; no significant effects were
evident when observations were continued over a sec-
ond, consecutive 1-h period.

D4 Antagonist Effects on D2-Like Agonist-Induced 
Behavior Over Habituated Condition

RU 24213 (0.1–12.5 mg/kg) dose-dependently induced
sniffing (p , .001), locomotion (p , .001), sifting (p ,
.001), and chewing (p , .001) with some yawning (p ,
.05); increases in stereotypy score (p , .001) in the range
of 2–3 indicated threshold levels in terms of sniffing
and locomotion, in the absence of compulsive licking or
gnawing. An intermediate dose of 2.5 mg/kg RU 24213
was selected for D4 antagonist studies to allow detec-
tion of either attenuation or potentiation of responsiv-
ity. Following challenge with RU 24213 (2.5 mg/kg),
sniffing (p , .001), locomotion (p , .001), rearing (p ,
.001) and chewing (p , .01) were dose-dependently
blocked by pretreatment with haloperidol (0.02–0.5
mg/kg). CP-293,019 (0.2–25.0 mg/kg) failed to influ-
ence significantly any aspect of response topography;
L-745,870 (0.04–1.0 mg/kg) antagonized only rearing
(p , .05), although with an inverse dose dependency,
and potentiated sifting (p , .01); Ro 61-6270 (0.2–25.0
mg/kg) antagonized only sniffing (p , .01), and poten-
tiated episodes of stillness (p , .01); the baseline level of
grooming (p , .05) was reduced by this drug combina-
tion. There were no significant effects on any other to-
pography of responsivity to RU 24213 or on stereotypy
scores.

D4 Agonist Effects on Behavior Over
Habituated Condition

CP-226,269 (0.2–25.0 mg/kg) failed to influence signifi-
cantly any topography of behavior over the 1-h period;
no significant effects were evident when observations
were continued over a second, consecutive 1-h period.
PD 168077 (0.2–25.0 mg/kg) dose-dependently induced
locomotion (p , .01), which took an unusual and charac-
teristic “shuffling” form with uncoordinated movements
together with yawning, and episodes of myoclonic jerk-
ing; grooming (p , .01), and rearing (p , .05) were re-
duced. Increases in stereotypy score were confined to the
range of 0–1, indicating that behavioral stimulation was
occurring episodically in a nonstereotyped manner. No
additional effects were seen when observations were
continued over a second, consecutive 1-h period.

D4 Antagonist Effects on D4 Agonist-Induced 
Behavior Over Habituated Condition

Following challenge with PD 168077 (25.0 mg/kg), ha-
loperidol (0.004–0.1 mg/kg) antagonized only sniffing,
whereas the baseline level of grooming was reduced by
this drug combination; there were no significant effects
of haloperidol on any other topography of responsivity
to PD 168077. CP-293,019 (0.2–25.0 mg/kg) and L-745,870
(0.04–1.0 mg/kg) failed to influence significantly any
topography of responsivity to PD 168077 (Figure 1).

DISCUSSION

CP-293,019, L-745,870, and Ro 61-6270 are novel D4 an-
tagonists showing .1000-fold selectivity over other
members of the D2-like receptor family and over their
D1-like counterparts; furthermore, they show .300-fold
selectivity over numerous non-DAergic receptors, other
than a .50-fold selectivity of CP-293,019 over 5-HT1A

and 5-HT2A receptors (Sanner et al. 1998; Patel et al.
1997; Hartman et al. 1996). No characteristic “etho-
gram” for these D4 antagonists was apparent, using
dosage ranges shown to exert biological activity in the
brain at alternative levels of examination (Hartman et
al. 1996; Holland et al. 1996; Patel et al. 1997). Although
CP-293,019 induced episodes of nonstereotyped sniff-
ing, vacuous chewing, and sifting, with attenuation of
grooming, no such profile was apparent for L-745,870
or Ro 61-6270; hence, these effects of CP-293,019 are un-
likely to have a basis in D4 antagonism. Similarly, these
selective D4 antagonists as a class failed to evidence any
characteristic “ethogram” at the level of responsivity to
D2-like [D2L/S, D3, D4] receptor stimulation.

CP-226,269 and PD 168077 are the first agents to be
identified as putative selective D4 agonists. They show
.100-fold selectivity over other members of the D2-like
receptor family and over their D1-like counterparts; in
addition, CP-226,269 shows an 80-fold selectivity over
a2 and .100-fold selectivity over several other non-
DAergic receptors, whereas PD168077 shows a 20-fold
selectivity over a1, and a2, a 45-fold selectivity over
5-HT1A, and a 460-fold selectivity over 5-HT2A recep-
tors; each agent evidences intrinsic activity at the D4 re-
ceptor in terms of quinpirole-like inhibition of forsko-
lin-stimulated cAMP accumulation (Zorn et al. 1997) or
stimulation of [3H]thymidine uptake (Glase et al. 1997)
in CHO cells expressing the human D4 receptor. How-
ever, to our knowledge, their psychopharmacological
effects have yet to be studied. No “ethogram” for CP-
226,269 was apparent over a wide dose range. Con-
versely, PD 168077 induced nonstereotyped episodes of
a “shuffling” form of locomotion with uncoordinated
movements, together with yawning and episodes of
myoclonic jerking, in the course of which grooming and
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Figure 1. Topographical responsivity to 25.0 mg/kg PD 168077 following pretreatment with 0.004–0.1 mg/kg haloperidol,
0.2–25.0 mg/kg CP-293,019, 0.04–1.0 mg/kg L-745,870 or vehicle over an initial 1-h period. Data are mean counts for each
behavior indicated 6 SEM of n 5 8–32 animals per group. ap , .05, bp , .01, cp , .001 vs. vehicle (V); *p , .05, **p , .01 ***p ,
.001 vs. PD 168077.
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rearing were reduced. However, these responses to PD
168077 were insensitive to D4 antagonism, either by CP-
293,019 or by L-745,870; furthermore, they were insensi-
tive to haloperidol. Therefore, it seems that these effects
of PD 168077 are not just unrelated to D4 receptor acti-
vation; rather, they seem to have a non-DAergic basis,
the nature of which remains to be specified. This con-
clusion indicates caution in the use of PD 168077 to
probe the functional role of D4 receptors.

In the rat, D4 receptors are located primarily in corti-
colimbic areas, particularly in frontal cortex, thalamus,
and hypothalamus, with low levels in the striatum/nu-
cleus accumbens (Jaber et al. 1996; Tarazi and Baldes-
sarini 1999). It is, therefore, important to establish the
extent to which the low level of D4 receptors in the stria-
tum/nucleus accumbens (or, indeed, the higher levels
elsewhere) might influence the topography of sponta-
neous behavior under diverse conditions or of D2-like
agonist-induced behavior; it seems that on the basis of
studies using selective D4 agonists and antagonists,
they have little role in this regard. Although a recent
study in mice with targeted gene deletion (”knockout”)
of the D4 receptor has indicated modest reductions in
horizontal and vertical movements relative to wild
types in terms of photobeam interuptions and height-
ened responsivity to methamphetamine (Rubinstein et
al. 1997), no study with any D4 antagonist has sug-
gested a comparable profile.

In relation to any antipsychotic potential of selective
D4 antagonists, recent studies in mice with targeted gene
deletion of individual members of the D2-like receptor
family indicate amphetamine-induced disruption of
prepulse inhibition to be essentially a D2 rather than a D3

or D4 receptor-mediated effect (Ralph et al. 1999). Selec-
tive D4 antagonists appear not to influence phencycli-
dine-induced stereotyped behavior or social isolation
(Sams-Dodd 1998), although they may reverse phency-
clidine-induced cognitive deficits (Jentsch et al. 1999).
The clozapine cue in drug discrimination responding
does not seem to generalize to a selective D4 antagonist
(Goudie et al. 1998). In the only controlled clinical trial
of a selective D4 antagonist in schizophrenia to date,
L-745,870 failed to evidence either antipsychotic activity
or extrapyramidal effects (Kramer et al. 1997); the D4/
5-HT2A antagonist fananserin (Heuillet et al. 1996) has
also been shown recently to evidence such a lack of thera-
peutic efficacy, although there seemed to be some wors-
ening of akathisia (Truffinet et al. 1999). Although the
present lack of psychopharmacological signature for se-
lective D4 antagonists is complementary to their apparent
inactivity both in models of antipsychotic activity and in
the clinic, it remains to be clarified whether any agent
with antipsychotic activity could be ethologically “silent.”
Furthermore, the present findings in no way preclude
any functional role(s) for the D4 receptor in social, cogni-
tive, or other processes, which require further study.
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